Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12343
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇiftçi, Okan-
dc.contributor.authorTenekeci, Samet-
dc.contributor.authorÜlgentürk, Ceren-
dc.date.accessioned2022-08-15T18:23:28Z-
dc.date.available2022-08-15T18:23:28Z-
dc.date.issued2021-
dc.identifier.isbn978-989-758-533-3-
dc.identifier.urihttps://doi.org/10.5220/0010678600003064-
dc.identifier.urihttps://hdl.handle.net/11147/12343-
dc.description13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K) / 13th International Conference on Knowledge Discovery and Information Retrieval (KDIR) -- OCT 25-27, 2021en_US
dc.description.abstractRecent advances in the web have greatly increased the accessibility of music streaming platforms and the amount of consumable audio content. This has made automated recommendation systems a necessity for listeners and streaming platforms alike. Therefore, a wide variety of predictive models have been designed to identify related artists and music collections. In this paper, we proposed a graph-based approach that utilizes association rules extracted from Spotify playlists. We constructed several artist networks and identified related artist clusters using Louvain and Label Propagation community detection algorithms. We analyzed internal and external cluster agreements based on different validation criteria. As a result, we achieved up to 99.38% internal and 90.53% external agreements between our models and Spotify's related artist lists. These results show that integrating association rule mining concepts with graph databases can be a novel and effective way to design an artist recommendation system.en_US
dc.description.sponsorshipINSTICCen_US
dc.language.isoenen_US
dc.publisherSCITEPRESSen_US
dc.relation.ispartofProceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KDIRen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAssociation rule miningen_US
dc.subjectCommunity detectionen_US
dc.subjectGraph databasesen_US
dc.titleArtist recommendation based on association rule mining and community detectionen_US
dc.typeConference Objecten_US
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.startpage257en_US
dc.identifier.endpage263en_US
dc.identifier.wosWOS:000796430100028en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı ve Öğrencien_US
dc.identifier.doi10.5220/0010678600003064-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept01. Izmir Institute of Technology-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
ArtistRecommendation.pdf795.66 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

1,060
checked on Nov 18, 2024

Download(s)

140
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.