Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11912
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüğümcü, Neslihanen_US
dc.contributor.authorNelson, Samen_US
dc.contributor.authorOyamaguchi, Natsumien_US
dc.date.accessioned2022-01-06T08:59:01Z-
dc.date.available2022-01-06T08:59:01Z-
dc.date.issued2021-
dc.identifier.urihttps://doi.org/10.1142/S0218216521500644-
dc.identifier.urihttps://hdl.handle.net/11147/11912-
dc.description.abstractBiquandle brackets are a type of quantum enhancement of the biquandle counting invariant for oriented knots and links, defined by a set of skein relations with coefficients which are functions of biquandle colors at a crossing. In this paper, we use biquandle brackets to enhance the biquandle counting matrix invariant defined by the first two authors in (N. Gügümcü and S. Nelson, Biquandle coloring invariants of knotoids, J. Knot Theory Ramif. 28(4) (2019) 1950029). We provide examples to illustrate the method of calculation and to show that the new invariants are stronger than the previous ones. As an application we show that the trace of the biquandle bracket matrix is an invariant of the virtual closure of a knotoid.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.ispartofJournal of Knot Theory and its Ramificationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiquandle bracketsen_US
dc.subjectBiquandlesen_US
dc.subjectKnotoidsen_US
dc.subjectQuantum enhancementsen_US
dc.titleBiquandle brackets and knotoidsen_US
dc.typeArticleen_US
dc.authorid0000-0001-7737-0606en_US
dc.institutionauthorGüğümcü, Neslihanen_US
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:000737990600006en_US
dc.identifier.scopus2-s2.0-85120798543en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1142/S0218216521500644-
dc.identifier.doiSCOPUS:2-s2.0-85120798543-
dc.contributor.affiliationIzmir Institute of Technologyen_US
dc.contributor.affiliationClaremont McKenna Collegeen_US
dc.contributor.affiliationShumei Universityen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

55,882
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.