Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBatal, Ahmeten_US
dc.contributor.authorÖzsarı, Türkeren_US
dc.contributor.authorYılmaz, Kemal Cemen_US
dc.date.accessioned2022-01-05T12:30:12Z-
dc.date.available2022-01-05T12:30:12Z-
dc.date.issued2021-12-
dc.identifier.issnEvolution Equations and Control TheoryOpen-
dc.identifier.urihttps://doi.org/10.3934/eect.2020095-
dc.identifier.urihttps://hdl.handle.net/11147/11908-
dc.descriptionWe would also like to thank Katherine Halley Willcox for proofreading. Third author is thankful for financial support from TÜBİTAK through BİDEB 2211-A grant.en_US
dc.description.abstractWe study the backstepping stabilization of higher order linear and nonlinear Schrödinger equations on a finite interval, where the boundary feedback acts from the left Dirichlet boundary condition. The plant is stabilized with a prescribed rate of decay. The construction of the backstepping kernel is based on a challenging successive approximation analysis. This contrasts with the case of second order pdes. Second, we consider the case where the full state of the system cannot be measured at all times but some partial information such as measurements of a boundary trace are available. For this problem, we simultaneously construct an observer and the associated backstepping controller which is capable of stabilizing the original plant. Wellposedness and regularity results are provided for all pde models. Although the linear part of the model is similar to the KdV equation, the power type nonlinearity brings additional difficulties. We give two examples of boundary conditions and partial measurements. We also present numerical algorithms and simulations verifying our theoretical results to the fullest extent. Our numerical approach is novel in the sense that we solve the target systems first and obtain the solution to the feedback system by using the bounded invertibility of the backstepping transformation. © 2021, American Institute of Mathematical Sciences. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBoundary controlleren_US
dc.subjectExponential stabilityen_US
dc.subjectBacksteppingen_US
dc.titleStabilization of higher order schrÖdinger equations on a finite interval: Part Ien_US
dc.typeArticleen_US
dc.authorid0000-0003-2869-6110en_US
dc.authorid0000-0003-4138-2685en_US
dc.institutionauthorBatal, Ahmeten_US
dc.institutionauthorYılmaz, Kemal Cemen_US
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:000697776800001en_US
dc.identifier.scopus2-s2.0-85120816768en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.3934/EECT.2020095-
dc.contributor.affiliationIzmir Institute of Technologyen_US
dc.contributor.affiliationİhsan Doğramacı Bilkent Üniversitesien_US
dc.contributor.affiliationIzmir Institute of Technologyen_US
dc.relation.issnEvolution Equations and Control TheoryOpenen_US
dc.description.volume10en_US
dc.description.issue4en_US
dc.description.startpage861en_US
dc.description.endpage919en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept04.02. Department of Mathematics-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
document.pdfArticle (Makale)2.44 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 23, 2024

Page view(s)

55,856
checked on Nov 18, 2024

Download(s)

280
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.