Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11779
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOnay, Fatih-
dc.contributor.authorMert, Ahmet-
dc.date.accessioned2021-12-02T18:16:10Z-
dc.date.available2021-12-02T18:16:10Z-
dc.date.issued2020-
dc.identifier.isbn978-1-7281-8073-1-
dc.identifier.urihttps://hdl.handle.net/11147/11779-
dc.description2020 Medical Technologies Congress (TIPTEKNO) -- NOV 19-20, 2020 -- ELECTR NETWORK -- Biyomedikal ve Klinik Muhendisligi Dernegi, Izmir Ekonomi Univ, Izmir Katip Celebi Univen_US
dc.description.abstractThe classification of EMG signals for the amputees is important to develop a powered-prosthetic that is capable of replacing with lost limbs. The EMG signals collected from residual limbs reduce the classification accuracy due to muscle movements that cannot be realized properly. In this study, classification performance is aimed to be increased by combining CNN with root mean square (RMS) and waveform length (WL) that are used in analysis of EMG signals successfully. The features such as RMS and WL extracted from EMG signals for the classification of six hand movements at the low, medium, and high force levels were applied to CNN input, and classification results were compared with nearest neighbour and linear discriminant analysis.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2020 Medical Technologies Congress (Tiptekno)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectromyographyen_US
dc.subjectConvolutional neural networksen_US
dc.subjectPattern recognitionen_US
dc.subjectAmputeeen_US
dc.titleAmpute elektromiyografi sinyallerinin evrişimli sinir ağları kullanılarak sınıflandırılmasıen_US
dc.typeConference Objecten_US
dc.institutionauthorOnay, Fatih-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.wosWOS:000659419900023en_US
dc.identifier.scopus2-s2.0-85099463427en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Amputee_Electromyography_Signal.pdf1.05 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

6,658
checked on Nov 18, 2024

Download(s)

124
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.