Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11761
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOğul, İskender Ülgen-
dc.contributor.authorÖzcan, Caner-
dc.contributor.authorHakdağlı, Özlem-
dc.date.accessioned2021-12-02T18:16:08Z-
dc.date.available2021-12-02T18:16:08Z-
dc.date.issued2019-
dc.identifier.isbn978-1-7281-1904-5-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/11147/11761-
dc.description27th Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2019 -- Sivas Cumhuriyet Univ, Sivas, TURKEY -- IEEE Turkey Sect, Turkcell, Turkhavacilik Uzaysanayii, Turitak Bilgem, Gebze Teknik Univ, SAP, Detaysoft, NETAS, Havelsanen_US
dc.description.abstractNowadays, the data revealed by the online individuals are increasing exponentially. The raw information that increasing data holds, transformed into meaningful outputs using machine learning and deep learning methods. Generally, supervised learning methods are used for information extraction and classification. Supervised learning is based on the training set that classification algorithms are trained. In the proposed approach, keyword extraction solution is proposed to classify text data more convenient. The developed solution is based on the Word2Vec algorithm, which works by taking into consideration the semantic meaning of the words unlike general approaches that based on word frequency. A new approach, word embedding algorithm named Word2Vec, works by calculating the word weights, semantic relationship, and the final weights of vectors. The obtained keywords are trained with Name Bayes and Decision Trees methods and the performance of the proposed method is shown by classification example.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 27th Signal Processing and Communications Applications Conference (SIU)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSparken_US
dc.subjectWord2Vecen_US
dc.subjectWord embeddingen_US
dc.subjectKeyword extractionen_US
dc.subjectText miningen_US
dc.titleWord2Vec kullanarak eş anlamlılık temelinde anahtar kelime çıkarımıen_US
dc.typeConference Objecten_US
dc.institutionauthorOğul, İskender Ülgen-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.wosWOS:000518994300157en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept01. Izmir Institute of Technology-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Keyword_Extraction_Based.pdf388.02 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Nov 9, 2024

Page view(s)

7,330
checked on Nov 18, 2024

Download(s)

190
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.