Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11676
Title: | Reidemeister torsion of closed л-manifolds | Other Titles: | Kapalı л-manifoldların Reidemeister torsiyonu | Authors: | Dirican Erdal, Esma | Advisors: | Sözen, Yaşar Erman, Fatih |
Keywords: | Compact manifold Reidemeister torsion Manifolds (Mathematics) Connected sum decomposition |
Publisher: | Izmir Institute of Technology | Source: | Dirican Erdal, E. (2017). Reidemeister torsion of closed л-manifolds. Unpublished doctoral dissertation, Izmir Institute of Technology, Izmir, Turkey | Abstract: | Let M be a closed orientable 2n-dimensional л-manifold such that n , 2 and M is
either (n-2)-connected or (n-1)-connected. Such a manifold M can be decomposed as a
connected sum of certain simpler manifolds. In this thesis, by using such connected sum
decompositions, we develop multiplicative gluing formulas that express the Reidemeister
torsion of M with untwisted R-coefficients in terms of Reidemeister torsions of its building
blocks in the decomposition. Then we apply these results to handlebodies, compact
orientable smooth (2n+1)-dimensional manifolds whose boundary is a (n-2)-connected
2n-dimensional closed л-manifold, and product manifolds. Kabul edelim ki M yönlendirilebilir kapalı 2n-boyutlu bir л-manifold olsun öyle ki n , 2 ve M ya (n-2)-bağlantılıdır yada (n-1)-bağlantılıdır. Böyle manifoldlar, daha basit manifoldların bağlantılı toplamı olarak ifade edilebilir. Bu tezde, bağlantılı toplamlar parçalanışı kullanılarak M manifoldunun R-değerli Reidemeister torsiyonunu bağlantılı toplamı oluşturan manifoldların Reidemeister torsiyonları cinsinden ifade eden çarpımsal yapıştırma formülleri geliştirilmiştir. Daha sonra bu sonuçlar tutamaçlara, sınırı (n-2)-bağlantılı 2n-boyutlu kapalı л-manifold olan kompakt yönlendirilebilir (2n + 1)-boyutlu manifoldlara ve son olarak çarpım manifoldlarına uygulanmıştır. |
Description: | Thesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2021 Includes bibliographical references (leaves: 108-113) |
URI: | https://hdl.handle.net/11147/11676 |
Appears in Collections: | Phd Degree / Doktora |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10408635.pdf | Doctoral Thesis | 389.96 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
314
checked on Nov 18, 2024
Download(s)
174
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.