Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11676
Title: | Reidemeister torsion of closed л-manifolds | Other Titles: | Kapalı л-manifoldların Reidemeister torsiyonu | Authors: | Dirican Erdal, Esma | Advisors: | Sözen, Yaşar Erman, Fatih |
Keywords: | Compact manifold Reidemeister torsion Manifolds (Mathematics) Connected sum decomposition |
Publisher: | Izmir Institute of Technology | Source: | Dirican Erdal, E. (2017). Reidemeister torsion of closed л-manifolds. Unpublished doctoral dissertation, Izmir Institute of Technology, Izmir, Turkey | Abstract: | Let M be a closed orientable 2n-dimensional л-manifold such that n , 2 and M is
either (n-2)-connected or (n-1)-connected. Such a manifold M can be decomposed as a
connected sum of certain simpler manifolds. In this thesis, by using such connected sum
decompositions, we develop multiplicative gluing formulas that express the Reidemeister
torsion of M with untwisted R-coefficients in terms of Reidemeister torsions of its building
blocks in the decomposition. Then we apply these results to handlebodies, compact
orientable smooth (2n+1)-dimensional manifolds whose boundary is a (n-2)-connected
2n-dimensional closed л-manifold, and product manifolds. Kabul edelim ki M yönlendirilebilir kapalı 2n-boyutlu bir л-manifold olsun öyle ki n , 2 ve M ya (n-2)-bağlantılıdır yada (n-1)-bağlantılıdır. Böyle manifoldlar, daha basit manifoldların bağlantılı toplamı olarak ifade edilebilir. Bu tezde, bağlantılı toplamlar parçalanışı kullanılarak M manifoldunun R-değerli Reidemeister torsiyonunu bağlantılı toplamı oluşturan manifoldların Reidemeister torsiyonları cinsinden ifade eden çarpımsal yapıştırma formülleri geliştirilmiştir. Daha sonra bu sonuçlar tutamaçlara, sınırı (n-2)-bağlantılı 2n-boyutlu kapalı л-manifold olan kompakt yönlendirilebilir (2n + 1)-boyutlu manifoldlara ve son olarak çarpım manifoldlarına uygulanmıştır. |
Description: | Thesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2021 Includes bibliographical references (leaves: 108-113) |
URI: | https://hdl.handle.net/11147/11676 |
Appears in Collections: | Phd Degree / Doktora |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10408635.pdf | Doctoral Thesis | 389.96 kB | Adobe PDF | View/Open |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.