Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11676
Title: Reidemeister torsion of closed л-manifolds
Other Titles: Kapalı л-manifoldların Reidemeister torsiyonu
Authors: Dirican Erdal, Esma
Advisors: Sözen, Yaşar
Erman, Fatih
Keywords: Compact manifold
Reidemeister torsion
Manifolds (Mathematics)
Connected sum decomposition
Publisher: Izmir Institute of Technology
Source: Dirican Erdal, E. (2017). Reidemeister torsion of closed л-manifolds. Unpublished doctoral dissertation, Izmir Institute of Technology, Izmir, Turkey
Abstract: Let M be a closed orientable 2n-dimensional л-manifold such that n , 2 and M is either (n-2)-connected or (n-1)-connected. Such a manifold M can be decomposed as a connected sum of certain simpler manifolds. In this thesis, by using such connected sum decompositions, we develop multiplicative gluing formulas that express the Reidemeister torsion of M with untwisted R-coefficients in terms of Reidemeister torsions of its building blocks in the decomposition. Then we apply these results to handlebodies, compact orientable smooth (2n+1)-dimensional manifolds whose boundary is a (n-2)-connected 2n-dimensional closed л-manifold, and product manifolds.
Kabul edelim ki M yönlendirilebilir kapalı 2n-boyutlu bir л-manifold olsun öyle ki n , 2 ve M ya (n-2)-bağlantılıdır yada (n-1)-bağlantılıdır. Böyle manifoldlar, daha basit manifoldların bağlantılı toplamı olarak ifade edilebilir. Bu tezde, bağlantılı toplamlar parçalanışı kullanılarak M manifoldunun R-değerli Reidemeister torsiyonunu bağlantılı toplamı oluşturan manifoldların Reidemeister torsiyonları cinsinden ifade eden çarpımsal yapıştırma formülleri geliştirilmiştir. Daha sonra bu sonuçlar tutamaçlara, sınırı (n-2)-bağlantılı 2n-boyutlu kapalı л-manifold olan kompakt yönlendirilebilir (2n + 1)-boyutlu manifoldlara ve son olarak çarpım manifoldlarına uygulanmıştır.
Description: Thesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2021
Includes bibliographical references (leaves: 108-113)
URI: https://hdl.handle.net/11147/11676
Appears in Collections:Phd Degree / Doktora

Files in This Item:
File Description SizeFormat 
10408635.pdfDoctoral Thesis389.96 kBAdobe PDFView/Open
Show full item record



CORE Recommender

Page view(s)

314
checked on Nov 18, 2024

Download(s)

174
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.