Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11630
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | CMS Collaboration | - |
dc.contributor.author | Karapınar, Güler | - |
dc.date.accessioned | 2021-11-06T09:57:57Z | - |
dc.date.available | 2021-11-06T09:57:57Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0370-2693 | - |
dc.identifier.issn | 1873-2445 | - |
dc.identifier.uri | https://doi.org/10.1016/j.physletb.2020.136036 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11630 | - |
dc.description.abstract | Measurements of the second Fourier harmonic coefficient (v(2)) of the azimuthal distributions of prompt and nonprompt D-0 mesons produced in pp and pPb collisions are presented. Nonprompt D-0 mesons come from beauty hadron decays. The data samples are collected by the CMS experiment at nucleon-nucleon center-of-mass energies of 13 and 8.16 TeV, respectively. In high multiplicity pp collisions, v(2) signals for prompt charm hadrons are reported for the first time, and are found to be comparable to those for light-flavor hadron species over a transverse momentum (pT) range of 2-6 GeV. Compared at similar event multiplicities, the prompt D-0 meson v(2) values in pp and pPb collisions are similar in magnitude. The v(2) values for open beauty hadrons are extracted for the first time via nonprompt D-0 mesons in pPb collisions. For pT in the range of 2-5 GeV, the results suggest that v(2) for nonprompt D-0 mesons is smaller than that for prompt D-0 mesons. These new measurements indicate a positive charm hadron v(2) in pp collisions and suggest a mass dependence in v(2) between charm and beauty hadrons in the pPb system. These results provide insights into the origin of heavy-flavor quark collectivity in small systems. (C) 2020 The Author(s). Published by Elsevier B.V. | en_US |
dc.description.sponsorship | We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MoSTR(Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the Excellence of Science -EOS -be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; The Ministry of Education, Youth and Sports(MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy -EXC 2121 Quantum Universe -390833306; the Lendulet (Momentum) Program and the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education of the Russian Federation, project no. 02.a03.21.; r 0005 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program; the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Physics Letters B | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | CMS | en_US |
dc.subject | Ridge | en_US |
dc.subject | Collectivity | en_US |
dc.subject | Small systems | en_US |
dc.subject | Heavy flavor | en_US |
dc.subject | Elliptic flow | en_US |
dc.title | Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Karapınar, Güler | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 813 | en_US |
dc.identifier.wos | WOS:000614817100032 | en_US |
dc.identifier.scopus | 2-s2.0-85100575799 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.physletb.2020.136036 | - |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 01. Izmir Institute of Technology | - |
Appears in Collections: | Rectorate / Rektörlük Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
26
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
20
checked on Nov 16, 2024
Page view(s)
144
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.