Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11548
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNakıp, Mert-
dc.contributor.authorKarakayalı, Kubilay-
dc.contributor.authorGüzeliş, Cüneyt-
dc.contributor.authorRodoplu, Volkan-
dc.date.accessioned2021-11-06T09:54:38Z-
dc.date.available2021-11-06T09:54:38Z-
dc.date.issued2021-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2021.3092228-
dc.identifier.urihttps://hdl.handle.net/11147/11548-
dc.description.abstractWe develop a novel end-to-end trainable feature selection-forecasting (FSF) architecture for predictive networks targeted at the Internet of Things (IoT). In contrast with the existing filter-based, wrapper-based and embedded feature selection methods, our architecture enables the automatic selection of features dynamically based on feature importance score calculation and gamma-gated feature selection units that are trained jointly and end-to-end with the forecaster. We compare the performance of our FSF architecture on the problem of forecasting IoT device traffic against the following existing (feature selection, forecasting) technique pairs: Autocorrelation Function (ACF), Analysis of Variance (ANOVA), Recurrent Feature Elimination (RFE) and Ridge Regression methods for feature selection, and Linear Regression, Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM), 1 Dimensional Convolutional Neural Network (1D CNN), Autoregressive Integrated Moving Average (ARIMA), and Logistic Regression for forecasting. We show that our FSF architecture achieves either the best or close to the best performance among all of the competing techniques by virtue of its dynamic, automatic feature selection capability. In addition, we demonstrate that both the training time and the execution time of FSF are reasonable for IoT applications. This work represents a milestone for the development of predictive networks for IoT in smart cities of the near future.en_US
dc.description.sponsorshipThis work was funded by the European Union's Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie grant agreement No. 846077, entitled ``Quality of Service for the Internet of Things in Smart Cities via Predictive Networks''.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Accessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectForecastingen_US
dc.subjectFeature extractionen_US
dc.subjectComputer architectureen_US
dc.subjectInternet of thingsen_US
dc.subjectSmart citiesen_US
dc.subjectTrainingen_US
dc.subjectPerformance evaluationen_US
dc.subjectNeural networksen_US
dc.titleAn end-to-end trainable feature selection-forecasting architecture targeted at the internet of thingsen_US
dc.typeArticleen_US
dc.institutionauthorKarakayalı, Kubilay-
dc.departmentİzmir Institute of Technology. Rectorateen_US
dc.identifier.volume9en_US
dc.identifier.startpage104011en_US
dc.identifier.endpage104028en_US
dc.identifier.wosWOS:000679523600001en_US
dc.identifier.scopus2-s2.0-85111960144en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/ACCESS.2021.3092228-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:IZTECH Research Centers Collection / İYTE Araştırma Merkezleri Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
An_End-to-End_Trainable_Feature.pdf4.33 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 9, 2024

Page view(s)

494
checked on Nov 18, 2024

Download(s)

236
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.