Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11543
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAycan, Esra-
dc.contributor.authorÖzbek, Berna-
dc.contributor.authorLe Ruyet, Didier-
dc.date.accessioned2021-11-06T09:54:38Z-
dc.date.available2021-11-06T09:54:38Z-
dc.date.issued2021-
dc.identifier.issn1874-4907-
dc.identifier.urihttps://doi.org/10.1016/j.phycom.2021.101364-
dc.identifier.urihttps://hdl.handle.net/11147/11543-
dc.description.abstractThis paper proposes an adaptive bit allocation scheme by using a fully connected (FC) deep neural network (DNN) considering imperfect channel state information (CSI) for heterogeneous networks. Achieving an accurate CSI has a crucial role on the system performance of the heterogeneous networks. Different quantization techniques have been employed to reduce the feedback overhead. However, the system performance cannot increase linearly with the number of bits increasing exponentially. Since optimizing the total number of bits is too complex for the entire network, an initial step is performed to distribute the bits to each cell in the conventional method. Then, the distributed bits are further allocated to each channel optimally. In order to enable direct allocation for the entire network, a FC-DNN based method is presented in this study. The optimized number of bits can be directly obtained for a different number of bits and scenarios by the proposed approach. The simulations are performed by using various scenarios with different allocation schemes. The performance results show that the DNN based method achieves a closer performance to the conventional approach. (C) 2021 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipScientific Research Projects Coordination unit of Izmir Katip Celebi UniversityIzmir Katip Celebi University [2020GAPMuMF0011]en_US
dc.description.sponsorshipThis research was partially supported by the Scientific Research Projects Coordination unit of Izmir Katip Celebi University (Project no. 2020GAPMuMF0011) .en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofPhysical Communicationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBit allocationen_US
dc.subjectDeep neural networksen_US
dc.subjectHeterogeneous networksen_US
dc.subjectChannel state informationen_US
dc.titleDeep learning based adaptive bit allocation for heterogeneous interference channelsen_US
dc.typeArticleen_US
dc.institutionauthorÖzbek, Berna-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume47en_US
dc.identifier.wosWOS:000672688700028en_US
dc.identifier.scopus2-s2.0-85108679626en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.phycom.2021.101364-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S1874490721001014-main.pdf1.15 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

2
checked on Oct 26, 2024

Page view(s)

11,236
checked on Nov 18, 2024

Download(s)

62
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.