Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11450
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Salata, Stefano | - |
dc.contributor.author | Grillenzoni, Carlo | - |
dc.date.accessioned | 2021-11-06T09:49:32Z | - |
dc.date.available | 2021-11-06T09:49:32Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 1470-160X | - |
dc.identifier.issn | 1872-7034 | - |
dc.identifier.uri | https://doi.org/10.1016/j.ecolind.2021.107758 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11450 | - |
dc.description.abstract | The multifunctional Ecosystem Service supply analysis at the spatial level is often the output of a weighted sum of layers in a Geographic Information System (GIS). This procedure is weak in detecting and representing the relationships between the input layers. Nonetheless, composite indicators produced by overlaying techniques are quite common in applied research and their discrepancies are underestimated in the scientific community, thus affecting the quality of resulting composite maps. In this work, we empirically test the effectiveness of multivariate statistics to obtain reliable composite Ecosystem Maps in the Turin metropolitan area (north-west Italy). We apply the Principal Component Analysis (PCA, using Matlab and ESRI ArcGis) to seven Ecosystem Service models (Habitat Quality, Carbon Sequestration, Water Yield, Nutrient Retention, Sediment Retention, Crop Production and Crop Pollination) and we evaluate how much the resulting composite map differs from the traditional GIS overlay. In doing this, the spectral analysis (with eigenvectors and eigenvalues) of the covariance matrix of the normalized layers confirms the heuristic arguments about the dependence between Ecosystem Services. We show that the PCA method can provide valuable results in landscape Green Network design, avoiding the limits of standard overlaying procedures. Finally, smoothing and classification techniques, applied to PCA estimates, can further improve the approach and encourage its use in various ecological indicators. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Ecological Indicators | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Ecosystem Services | en_US |
dc.subject | Principal Component Analysis | en_US |
dc.subject | Composite indicators | en_US |
dc.subject | Overlay | en_US |
dc.subject | Geographic information system | en_US |
dc.subject | Environmental indicators | en_US |
dc.title | A spatial evaluation of multifunctional Ecosystem Service networks using Principal Component Analysis: A case of study in Turin, Italy | en_US |
dc.type | Article | en_US |
dc.authorid | 0000-0001-9342-9241 | - |
dc.institutionauthor | Salata, Stefano | - |
dc.department | İzmir Institute of Technology. City and Regional Planning | en_US |
dc.identifier.volume | 127 | en_US |
dc.identifier.wos | WOS:000659185700007 | en_US |
dc.identifier.scopus | 2-s2.0-85105275757 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.ecolind.2021.107758 | - |
dc.authorwosid | Salata, Stefano/B-9186-2018 | - |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosqualityttp | Top10% | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 02.03. Department of City and Regional Planning | - |
Appears in Collections: | City and Regional Planning / Şehir ve Bölge Planlama Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S1470160X21004234-main.pdf | 18.41 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
33
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
28
checked on Nov 9, 2024
Page view(s)
30,398
checked on Nov 18, 2024
Download(s)
310
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.