Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11449
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlagöz, Yusuf-
dc.contributor.authorBüyükaşık, Engin-
dc.date.accessioned2021-11-06T09:49:32Z-
dc.date.available2021-11-06T09:49:32Z-
dc.date.issued2021-
dc.identifier.issn0938-1279-
dc.identifier.issn1432-0622-
dc.identifier.urihttps://doi.org/10.1007/s00200-020-00482-4-
dc.identifier.urihttps://hdl.handle.net/11147/11449-
dc.description.abstractIn this paper, we continue to study and investigate the homological objects related to s-pure and neat exact sequences of modules and module homomorphisms. A right module A is called max-flat if Tor(1)(R) (A, R/I) = 0 for any maximal left ideal I of R. A right module B is said to be max-cotorsion if Ext(R)(1)(A, B) = 0 for any max-flat right module A. We characterize some classes of rings such as perfect rings, max-injective rings, SF rings and max-hereditary rings by max-flat and max-cotorsion modules. We prove that every right module has a max-flat cover and max-cotorsion envelope. We show that a left perfect right max-injective ring R is QF if and only if maximal right ideals of R are finitely generated. The max-flat dimensions of modules and rings are studied in terms of right derived functors of -circle times-. Finally, we study the modules that are injective and flat relative to s-pure exact sequences.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofApplicable Algebra In Engineering Communication And Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject(Max-)flat modulesen_US
dc.subjectMax-cotorsion modulesen_US
dc.subjectSP-flat modulesen_US
dc.subjectMax-hereditary ringsen_US
dc.subjectQuasi-Frobenius ringsen_US
dc.titleOn max-flat and max-cotorsion modulesen_US
dc.typeArticleen_US
dc.authorid0000-0002-2535-4679-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume32en_US
dc.identifier.issue3en_US
dc.identifier.startpage195en_US
dc.identifier.endpage215en_US
dc.identifier.wosWOS:000605558800002en_US
dc.identifier.scopus2-s2.0-85098789791en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s00200-020-00482-4-
dc.authorwosidAlagoz, Yusuf/ABI-3284-2020-
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Alagöz-Büyükaşık2021_Article.pdf2.57 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 9, 2024

Page view(s)

25,626
checked on Nov 18, 2024

Download(s)

92
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.