Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11391
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPashaev, Oktay-
dc.date.accessioned2021-11-06T09:48:28Z-
dc.date.available2021-11-06T09:48:28Z-
dc.date.issued2021-
dc.identifier.issn0040-5779-
dc.identifier.issn1573-9333-
dc.identifier.urihttps://doi.org/10.1134/S0040577921080079-
dc.identifier.urihttps://hdl.handle.net/11147/11391-
dc.description.abstractThe problem of Hadamard quantum coin measurement in n trials, with an arbitrary number of repeated consecutive last states, is formulated in terms of Fibonacci sequences for duplicated states, Tribonacci numbers for triplicated states, and N-Bonacci numbers for arbitrary N-plicated states. The probability formulas for arbitrary positions of repeated states are derived in terms of the Lucas and Fibonacci numbers. For a generic qubit coin, the formulas are expressed by the Fibonacci and more general, N-Bonacci polynomials in qubit probabilities. The generating function for probabilities, the Golden Ratio limit of these probabilities, and the Shannon entropy for corresponding states are determined. Using a generalized Born rule and the universality of the n-qubit measurement gate, we formulate the problem in terms of generic n- qubit states and construct projection operators in a Hilbert space, constrained on the Fibonacci tree of the states. The results are generalized to qutrit and qudit coins described by generalized FibonacciN-Bonacci sequences.en_US
dc.description.sponsorshipThis work was supported in part by the TUBITAK grant 116F206.en_US
dc.language.isoenen_US
dc.publisherPleiades Publishingen_US
dc.relation.ispartofTheoretical and Mathematical Physicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFibonacci numbersen_US
dc.subjectQuantum measurementen_US
dc.subjectTribonacci numbersen_US
dc.subjectN-Bonacci numbersen_US
dc.titleQuantum coin flipping, qubit measurement, and generalized Fibonacci numbersen_US
dc.typeArticleen_US
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume208en_US
dc.identifier.issue2en_US
dc.identifier.startpage1075en_US
dc.identifier.endpage1092en_US
dc.identifier.wosWOS:000686798400007en_US
dc.identifier.scopus2-s2.0-85113143084en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1134/S0040577921080079-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Pashaev2021_Article_Quantum.pdf287.66 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 23, 2024

Page view(s)

22,132
checked on Nov 18, 2024

Download(s)

380
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.