Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11119
Title: Development of a Personalized Thermal Comfort Driven Controller for Hvac Systems
Authors: Turhan, Cihan
Simani, Silvio
Gökçen Akkurt, Gülden
Keywords: Energy consumption
Energy efficiency
Fuzzy logic
HVAC systems
Publisher: Elsevier Ltd.
Abstract: Increasing thermal comfort and reducing energy consumption are two main objectives of advanced HVAC control systems. In this study, a thermal comfort driven control (PTC-DC) algorithm was developed to improve HVAC control systems with no need of retrofitting HVAC system components. A case building located in Izmir Institute of Technology Campus-Izmir-Turkey was selected to test the developed system. First, wireless sensors were installed to the building and a mobile application was developed to monitor/collect temperature, relative humidity and thermal comfort data of an occupant. Then, the PTC-DC algorithm was developed to meet the highest occupant thermal comfort as well as saving energy. The prototypes of the controller were tested on the case building from July 3rd, 2017 to November 1st, 2018 and compared with a conventional PID controller. The results showed that the developed control algorithm and conventional controller satisfy neutral thermal comfort for 92 % and 6 % of total measurement days, respectively. From energy consumption point of view, the PTC-DC decreased energy consumption by 13.2 % compared to the conventional controller. Consequently, the PTC-DC differs from other works in the literature that the prototype of PTC-DC can be easily deployed in real environments. Moreover, the PTC-DC is low-cost and user-friendly.
URI: https://hdl.handle.net/11147/11119
ISSN: 0360-5442
Appears in Collections:Energy Systems Engineering / Enerji Sistemleri Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
1-s2.0-S0360544221018168-main.pdfArticle (Makale)2.64 MBAdobe PDFView/Open
Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.