Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11053
Title: | Two-Particle Schrodinger Operators With Point Interactions | Other Titles: | Noktasal Etkileşim İçeren İki-parçacıklı Schrödinger İşlemcileri | Authors: | Kızılkaya, Melih | Advisors: | Erman, Fatih | Keywords: | Quantum mechanics Schrödinger operator Operator theory Point interactions |
Publisher: | 01. Izmir Institute of Technology | Source: | Kızılkaya, M. (2020). Two-particle Schrodinger operators with point interactions. Unpublished master's thesis, İzmir Institute of Technology, İzmir, Turkey | Abstract: | In this thesis, a singular quantum mechanical problem, where two particles interact with each other through Dirac delta potentials in the plane, has been considered. The proof for the existence of a self-adjoint Hamiltonian operator for the model is given by using some operator theory techniques and renormalization idea in quantum field theory. Moreover, some necessary background for unbounded operators is reviewed in order to make the thesis as self-contained as possible. Bu tezde, iki parçacıgın düzlemde birbirleriyle Dirac delta potensiyeliyle etkileştiği tekil bir kuantum mekaniği problemi ele alınmıştır. Bazı operator teorisi teknikleri ve Kuantum alan teorisindeki renormalizasyon fikri kullanılarak, model için kendine eşlenik bir Hamiltoniyen operatünün var olduğunun ispatı verilmiştir. Ayrıca, tezin sadece kendi başına yeterli olabilmesi amacıyla, sınırlı olmayan operatorler için bazı gerekli olan alt yapı derlenecektir. |
Description: | Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2020 Includes bibliographical references (leaves: 142-147) Text in English; Abstract: Turkish and English |
URI: | https://hdl.handle.net/11147/11053 |
Appears in Collections: | Master Degree / Yüksek Lisans Tezleri |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
655008.pdf | MasterThesis | 935.28 kB | Adobe PDF | View/Open |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.