Please use this identifier to cite or link to this item:
Title: User selection for millimeter wave non-uniform full dimensional MIMO
Authors: Cumalı, İrem
Özbek, Berna
Mumtaz, Rao
Gonzalez, Jonathan
Keywords: Millimeter wave communication
MIMO communication
Antenna arrays
Millimeter wave technology
Full dimensional MIMO
Millimeter waves
User selection
Publisher: IEEE
Abstract: The millimeter wave (mmWave) based full-dimensional (FD) MIMO communication is one of the promising technology to fulfill the demand of high data rate for the sixth generation (6G) services including 6D hologram, haptic and multi-sensory communications. In order to satisfy the requirements of 6G applications, we investigate a non-uniform rectangular array (NURA) structure with FD-MIMO antenna systems for the multiuser mmWave communications. For the dense scenarios where the number of users to be served is high, we propose user selection algorithms for both digital and hybrid transceiver designs in FD-MIMO with NURA for the multiuser mmWave communications. For the digital transceivers, the users are selected based on their channel correlation considering FD-MIMO with NURA structures. For the hybrid transceivers, sequential user and beam selection is performed using the correlation between the beamspace channels in FD-MIMO with NURA case. The superiority of the NURA compared to uniform antenna structure is shown through the performance evaluations in the multiuser mmWave communications. Besides, the sum data rate results and complexity analysis denote the feasibility of the proposed algorithms compared to the joint user and beam selection schemes.
ISSN: 2169-3536
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
User_Selection.pdf5.32 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Apr 5, 2024


checked on Mar 23, 2024

Page view(s)

checked on Apr 22, 2024


checked on Apr 22, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.