Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/10480
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSirunyan, A.M.-
dc.contributor.authorTumasyan, A.-
dc.contributor.authorAdam, W.-
dc.contributor.authorAmbrogi, F.-
dc.contributor.authorBergauer, T.-
dc.contributor.authorDragicevic, M.-
dc.contributor.authorOkhotnikov, V.-
dc.date.accessioned2021-01-24T18:44:53Z-
dc.date.available2021-01-24T18:44:53Z-
dc.date.issued2020-
dc.identifier.issn1748-0221-
dc.identifier.urihttps://doi.org/10.1088/1748-0221/15/06/P06005-
dc.description.abstractMachine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at s = 13TeV, corresponding to an integrated luminosity of 35.9 fb-1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency. © 2020 CERN for the benefit of the CMS collaboration..en_US
dc.description.sponsorshipHorizon 2020 Framework Programme, H2020, (675440, 752730, 765710); Horizon 2020 Framework Programme, H2020; Science and Technology Facilities Council, STFC, (GRIDPP); Science and Technology Facilities Council, STFCen_US
dc.language.isoenen_US
dc.publisherInstitute of Physicsen_US
dc.relation.ispartofJournal of Instrumentationen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLarge Detector-Systems Performanceen_US
dc.subjectPattern Recognition, Cluster Finding, Calibration And Fitting Methodsen_US
dc.titleIdentification of Heavy, Energetic, Hadronically Decaying Particles Using Machine-Learning Techniquesen_US
dc.typeArticleen_US
dc.institutionauthorKarapınar, Güler-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume15en_US
dc.identifier.issue6en_US
dc.identifier.wosWOS:000545350900005-
dc.identifier.scopus2-s2.0-85088524436-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1088/1748-0221/15/06/P06005-
dc.relation.doi10.1088/1748-0221/15/06/P06005en_US
dc.coverage.doi10.1088/1748-0221/15/06/P06005-
dc.authorscopusid16239550900-
dc.authorscopusid35222495600-
dc.authorscopusid56217303000-
dc.authorscopusid57195404626-
dc.authorscopusid56236454000-
dc.authorscopusid58189557300-
dc.authorscopusid57218434144-
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityttpTop10%en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
Appears in Collections:Rectorate / Rektörlük
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

122
checked on Mar 28, 2025

WEB OF SCIENCETM
Citations

94
checked on Mar 22, 2025

Page view(s)

164
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.