Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/10298
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Üngör, Burcu | - |
dc.contributor.author | Kafkas, Gizem | - |
dc.contributor.author | Halıcıoğlu, Sait | - |
dc.contributor.author | Harmancı, Abdullah | - |
dc.date.accessioned | 2021-01-24T18:33:39Z | - |
dc.date.available | 2021-01-24T18:33:39Z | - |
dc.date.issued | 2012 | - |
dc.identifier.issn | 1303-5991 | - |
dc.identifier.issn | 2618-6470 | - |
dc.identifier.uri | https://hdl.handle.net/11147/10298 | - |
dc.identifier.uri | https://doi.org/10.1501/Commua1_0000000675 | - |
dc.description.abstract | R birimli bir halka, M saº g R-mod¸l ve M nin endomorÖzma halkas¨ S = EndR(M) olsun. Her f 2 S iÁin rM(f) = eM olacak biÁimde e2 = e 2 S varsa (denk olarakKerf,Mmod¸l¸n¸nbirdirekttoplanan¨ise)MyeRickartmod¸lad¨verilmi?stir[8]. BuÁal¨?smadaRickartmod¸llerinˆzellikleriincelenmeyedevamedilmi?stir. M birRickart mod¸l olmak ¸zere, M nin S-kat¨ (s¨ras¨yla S-indirgenmi?s, S-simetrik, S-yar¨ deºgi?smeli, S-Armendariz)mod¸l olmas¨ iÁin gerek ve yeter ?sart¨n S nin kat¨ (s¨ras¨yla indirgenmi?s, simetrik, yar¨ deºgi?smeli, Armendariz) halka olduºgu gˆsterilmi?stir. M[x], S[x] halkas¨na gˆre Rickart mod¸l iken M nin de Rickart mod¸l oldugu,tersinin M nin S-Armendariz olmas¨ durumunda doºgru olduºgu ispatlanm¨?st¨r. Ayrıca bir M mod¸l¸n¸n Rickart ol- mas¨iÁingerekveyeter?sart¨nhersaºgmod¸l¸nM-temelprojektifolduºgueldeedilmi?stir. | en_US |
dc.description.abstract | Let Rbeanarbitraryringwithidentity and M aright R-module with S =EndR(M). Following [8],the module M is called Rickart if for any f 2 S, rM(f) = eM for some e2 = e 2 S, equivalently, Kerf is a direct summandofM. Inthispaper,wecontinuetoinvestigatepropertiesofRickart modules. For a Rickart module M, we prove that M is S-rigid (resp., S- reduced, S-symmetric, S-semicommutative, S-Armendariz) if and only if its endomorphism ring S is rigid (resp., reduced, symmetric, semicommutative, Armendariz). We also prove that if M[x]is a Rickart module with respect to S[x], then M is Rickart, the converse holds if M is S-Armendariz. Among others it is also shown that M is a Rickart module if and only if every right R-module is M-principally projective. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ankara Üniversitesi | en_US |
dc.relation.ispartof | Communications Series A1: Mathematics and Statistics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Symmetric modules | en_US |
dc.subject | Rickart modules | en_US |
dc.subject | Reduced modules | en_US |
dc.title | Some Properties of Rickart Modules | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Kafkas, Gizem | tr |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 61 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 8 | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | tr |
dc.identifier.trdizinid | 180152 | en_US |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | Mathematics / Matematik TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2e5f7003-44da-4014-b802-f559945f8d78.pdf | 141.18 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
440
checked on Dec 16, 2024
Download(s)
78
checked on Dec 16, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.