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SOME PROPERTIES OF RICKART MODULES

B. UNGOR, G. KAFKAS, S. HALICIOGLU AND A. HARMANCI

ABSTRACT. Let R be an arbitrary ring with identity and M a right R-module
with S = Endr(M). Following [8], the module M is called Rickart if for any
f eS8, ryu(f) = eM for some €2 = e € S, equivalently, Kerf is a direct
summand of M. In this paper, we continue to investigate properties of Rickart
modules. For a Rickart module M, we prove that M is S-rigid (resp., S-
reduced, S-symmetric, S-semicommutative, S-Armendariz) if and only if its
endomorphism ring S is rigid (resp., reduced, symmetric, semicommutative,
Armendariz). We also prove that if M|z] is a Rickart module with respect to
S[z], then M is Rickart, the converse holds if M is S-Armendariz. Among
others it is also shown that M is a Rickart module if and only if every right
R-module is M-principally projective.

1. INTRODUCTION

Throughout this paper R denotes an associative ring with identity and mod-
ules will be unitary right R-modules. For a module M, S = Endgr(M) denotes
the ring of right R-module endomorphisms of M. Then M is a left S-module,
right R-module and (S, R)-bimodule. In this work, for any rings S and R and any
(S, R)-bimodule M, rr(.) and I5/(.) denote the right annihilator of a subset of M
in R and the left annihilator of a subset of R in M, respectively. Similarly, Is(.)
and 7p7(.) will be the left annihilator of a subset of M in S and the right annihi-
lator of a subset of S in M, respectively. A ring R is reduced if it has no nonzero
nilpotent elements. A ring R is called semicommutative if for any a,b € R, ab =0
implies aRb = 0. The module M is called S-semicommutative [2], if for any f € S
and m € M, fm = 0 implies fSm = 0. Baer rings [3] are introduced as rings
in which the right (left) annihilator of every nonempty subset is generated by an
idempotent. According to Rizvi and Roman, an R-module M is called Baer [7]
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if for any R-submodule N of M, lg(N) = Se with ¢ = ¢ € S. Also, they de-
fined Rickart modules in [8]. Recently Rickart modules are studied extensively by
different authors (see [1] and [5]).

2. RICKART MODULES

Let M be an R-module with S = Endg(M). The module M is called Rickart
if for any f € S, rp(f) = eM for some e? = e € S, equivalently, Kerf is a direct
summand of M. It is clear that every semisimple module, every Baer module is a
Rickart module. We continue to investigate properties of Rickart modules.

Let M be an R-module. A right R-module N is called M -principally projective

[9], if for any f € S, and any N 2, f(M) there exists a N % M such that the
following diagram is commutative.

M- f() —— o

By the following Theorem 2.1 we investigate the relations between this class of
modules and Rickart modules.

Theorem 2.1. Let M be an R-module. Then M is a Rickart module if and only
if every right R-module is M -principally projective.

Proof. Assume that M is a Rickart module and let f € S. There exists e2 =e € S
such that rp(f) = eM. Then M = rp(f) @ K for some K < M. For any right R-
module N and any N LN f(M),since f(M) =2 M/ry(f) for any n € N we may write
h(n) = k+ 7 (f) for some k € K and we define N % M by g(n) = k. Then g is a
well defined R-map and for n € N, h(n) = fg(n). Conversely, suppose that every
right R-module N is M-principally projective and f € S. In particular M /rp;(f)
is M-principally projective. So consider the identity map from M /ry(f) onto
M/rp(f). By considering f(M) = M/ry(f) and supposition there exists a map
g from M/rpy(f) to M such that 1 = fg. For any m € M, m — g(f(m)) € rap(f)
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and g(f(m)) € Img, we have M = 7y (f) @ Img. Let e denote the projection of
M onto rp(f). Then rp(f) = eM. O
Let M be an R-module and consider the set
F(M)={m e M| fm =0 for some nonzero f € S}

of all torsion elements of the module M with respect to S. The subset F(M) of
M need not be a submodule of the modules sM and Mp in general. If S is a
commutative domain, then F(M) is an (5, R)-submodule of M.

Proposition 2.2. Let M be an R-module with a domain S = Endr(M). If M is
a Rickart module, then F(M) = 0 and every nonzero element of S is a monomor-

phism.

Proof. Let M be a Rickart module and 0 # f € S. Then there exists an idempotent
e € S such that rp(f) = eM. Hence feM = 0. Thus fe = 0in S. Since S is a
domain and f is nonzero, e = 0 or every nonzero element of S is a monomorphism.
If m € F(M), then there exists a nonzero f € S such that fm = 0. Since f is a

monomorphism, we have m = 0, and so F(M) = 0. O

The following result is an immediate consequence of Proposition 2.2.

Corollary 2.3. Let M be an R-module with a domain S = Endr(M). If M is a

Rickart module, then M is torsion-free.

The next result can be obtained from Proposition 2.2 and [7, Theorem 2.23].

Corollary 2.4. Let M be an R-module. Then the following are equivalent.

(1) M is an indecomposable Baer module.
(2) S is a domain and M is a Rickart module.
(3) Ewery nonzero element of S is a monomorphism.
Our next endeavor is to investigate relationships among reduced, rigid, symmet-

ric, semicommutative, Armendariz modules and their endomorphism rings by using
Rickart modules.

Definition 2.5. Let M be an R-module. A module M is called S-reduced if fm =0
implies Imf N .Sm =0 for each f € S, m e M.

It can be easily proved that M is an S-reduced module if and only if f2m = 0
implies fSm =0 for each f € S, m € M.
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Lemma 2.6. Let M be an R-module. If M is an S-reduced module, then S is a

reduced ring. The converse holds if M is a Rickart module.

Proof. The first statement is clear from [1, Lemma 2.11] and [1, Proposition 2.14].
Conversely, assume that M is a Rickart module and S is a reduced ring. Let f € S
and m € M with fm = 0. Then r,(f) = eM for some € = e € S. Hence fe =0
and m = em. Since e is central, we have ef = 0. Let fm; = gm € fM NSm, where
mi1 € M and g € S. Thus 0 = efm; = egm = gem = gm, and so fM N Sm = 0.
Therefore M is S-reduced. U

Let M be an R-module. Recall that M is called an S-rigid module [1] if for any
feSandme M, f2m =0 implies fm = 0.
Lemma 2.7. Let M be an R-module. If M is an S-rigid module, then S is a

reduced ring. The converse holds if M is a Rickart module.

Proof. The first statement is clear from [1, Lemma 2.20]. Conversely, assume that
M is a Rickart module and S is a reduced ring. Let f € S and m € M with
f?m = 0. Then r/(f) = eM for some e? = ¢ € S. Hence fe =0 and fm = efm.

Since e is central, we have fm = efm = fem = 0. Therefore M is S-rigid. O

According to Lambek [4], a ring R is called symmetric if whenever
a,b,c € R satisfy abc = 0, we have acb = 0. For the module case, we have the
following.

Definition 2.8. Let M be an R-module. A module M is called S-symmetric if for
any m € M and f, g € S, fgm = 0 implies gfm = 0.

Lemma 2.9. Let M be an R-module. If M is an S-symmetric module, then S is

a symmetric ring. The converse holds if M is a Rickart module.

Proof. Let f,g,h € S and assume fgh = 0. Then fg(h(m)) =0 and g(fh)(m) =0
implies fhg(m) = 0 for all m € M. Hence fhg = 0. Conversely, assume that M
is a Rickart module and S is a symmetric ring. Let f,g € S and m € M with
fgm = 0. Then ry(fg) = eM for some e? = e € S. Hence fge = 0 and m = em.
By assumption gef = 0. Since e is central, we have gfm = gfem = gefm = 0.

Therefore M is S-symmetric. (I

Lemma 2.10. Let M be an R-module. If M is an S-semicommutative module,

then S is a semicommutative ring. The converse holds if M is Rickart.
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Proof. The first statement is proved in [2, Lemma 2.1]. Conversely, assume that
M is a Rickart module and S is a semicommutative ring. Let f € S, m € M
with fm = 0. Then ry/(f) = eM for some €> = e € S. Hence fe = 0 and
m = em. Since e is central, fgm = fgem = fegm = 0 for any g € S. Thus M is

S-semicommutative. O

In [6], the ring R is called Armendariz if for any f(z) = Y a2’
i=0

g(z) = Y bja? € Rlz], f(z)g(z) = 0 implies a;b; = 0 for all ¢ and j. Let M
3=0
be an R-module. The module M is called S-Armendariz if the following condition

(1) is satisfied, while M is said to be S-Armendariz of power series type if the
following condition (2) is satisfied.

(1) Forany f(z) = 3 aia’ € S[] and m(z) = 32 mya? € Ma], f(z)m(z) =0
implies a;m; = Z():(Eor all 7 and j. =

(2) Forany f(z) = > aia’ € S[a]] and m(z) = Y- mya? € Ml[e]], f(z)m(x) =
0 implies a;m; z:Z(()) for all ¢ and j. =

Lemma 2.11. Let M be an R-module. If M is an S-Armendariz module, then S

is an Armendariz ing. The converse holds if M is a Rickart module.
n ) k )

Proof. Let f(x) = > a;x’, g(xz) = > bja? € S[z] with f(z)g(xz) = 0. For any m €
i=0 j=0

k

M, g(z)ym = > (bjm)z? € M[z]. Since f(x)g(x) = 0, we have f(z)(g(x)m) = 0.
j=0

This implies that a;(bjm) = (a;b;)m =0 for all 0 < ¢ <n and 0 < j <k, and so

a;b; = 0 for all 7 and j. Therefore S is Armendariz. Conversely, assume that S

is an Armendariz ring and M is a Rickart module. By [5, Proposition 3.2], S is a

right Rickart ring. Since S is Armendariz, S is a reduced ring. By Lemma 2.6, M

is S-reduced and so S-Armendariz. O

Corollary 2.12. Let M be an R-module. If M is an Armendariz of power series
type, then S is an S-Armendariz of power series type. The converse holds if M is

a Rickart module.

Proof. Similar to the proof of Lemma 2.11. O
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We now summarize the relations between rigid, reduced, symmetric, semicom-
mutative, Armendariz modules and their endomorphism rings by using Rickart
modules.

Theorem 2.13. Let M be an R-module. If M is a Rickart module, then
1) M is S-rigid if and only if S is a reduced ring.
2) M is S-reduced if and only if S is a reduced ring.

)
3) M is S-symmetric if and only if S is a symmetric ring.
4) M is S-semicommutative if and only if S is a semicommutative ring.
)

(
(
(
(
(5) M is S-Armendariz if and only if S is an Armendariz ring.

(6) M is S-Armendariz of power series type if and only if S is an Armendariz of

power series type ring.

Proof. (1) Lemma 2.6. (2) Lemma 2.7. (3) Lemma 2.9. (4) Lemma 2.10. (5)
Lemma 2.11. (6) Corollary 2.12. O

The next result follows from Theorem 2.13 and [1, Theorem 2.25].

Corollary 2.14. Let M be an R-module. If M is a Rickart module, then the
following conditions are equivalent.

1) S is a reduced ring.

S is a symmetric ring.

S is a semicommutative ring.

S is an Armendariz ring.

S is an Armendariz of power series type ring.
In the sequel, we study the polynomial extension of Rickart modules. Let M be
S
an R-module. It can be easily shown that M[z] = {Zmixi i85 >0,m; € M} is
=0

an abelian group under an obvious addition operation and M |[x] becomes a module
over R[z] with

m(x) = Zmizi € Mlz] , f(z)= Zaixi € Rjz],

=0 =0

m(x)f(z) = Z Z mia; | "

k=0 \i+j=k
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Similarly, M|z] is a left S[z]-module with

fl@)=> fa' €Sl , mx)=>Y mja’ € Mlz],
1=0

j=0

s+t
f@ym@) =" | D fimy | o
k=0 \i+j=k

The module M|z] is called Rickart with respect to Slx] if for any f(z) € S[z],
there exists e(z)? = e(x) € S[z] such that 7y, (f(2)) = e(x)M|[z].

Theorem 2.15. Let M be an R-module with S =Endgr(M). If M[z] is a Rickart
module with respect to S[x], then M is Rickart. The converse holds if M is S-

Armendariz.

Proof. Assume that M][z] is a Rickart module and f € S. Consider f € S[x]
defined by f(>_m;x?) =3 f(m;)z’. Then Kerf is a direct summand of M [z], that
is, M[z] = Kerf® K. It is easy to show that M = Kerf® K, where K| is the set of

elements in K evaluated in zero. Then M is a Rickart module. Conversely, assume
k )

that M is a Rickart module and f(z) = > fia* € S[z]. By hypothesis, there
i=0

exist €2 =¢; € S (i = 0,1,2,...,k) such that ry(f;) = e;M. Let e = egeqea...cx.

t .
We prove 7y (f(z)) = eMlz]. For if m(z) = Y mja’ € rypy(f(z)), then
j=0
f(z)m(x) = 0. Since M is S-Armendariz, fym; =0 for each i =0,1,2, ...,k and for
each j =0,1,2,....,t. Then m; € ry(f;) = ;M and so e;m; = mj, em; = m; and
em(z) = m(x). Hence m(z) € eM[x] and so rys(f(z)) < eM[z]. On the other
hand, eM[z] < rar,)(f (7)) and so eM[z] = 7021 (f(2)). O

Then we have the following result.

Corollary 2.16. Let R be a ring. If Rlx] is a left Rickart ring, then R is a left

Rickart ring. The converse holds if R is Armendariz.

Ozet: R birimli bir halka, M sag R-modiil ve M nin endomorfizma halkas1 S =
Endr(M) olsun. Her f € S igin rar(f) = eM olacak bigimde e = e € S varsa (denk
olarak Kerf, M modiiliiniin bir direkt toplanani ise) M ye Rickart modil ad1 verilmistir [8].
Bu ¢alismada Rickart modiillerin 6zellikleri incelenmeye devam edilmigtir. M bir Rickart
modiil olmak iizere, M nin S-kat1 (sirasiyla S-indirgenmis, S-simetrik, S-yar1 degigmeli,
S-Armendariz) modiil olmas: i¢in gerek ve yeter sartin S nin kati (swrasiyla indirgenmis,
simetrik, yar1 degismeli, Armendariz) halka oldugu gosterilmistir. M|[z], S[z] halkasina
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gore Rickart modiil iken M nin de Rickart modiil oldugu, tersinin M nin S-Armendariz
olmasi durumunda dogru oldugu ispatlanmigtir. Ayrica bir M modiiliiniin Rickart ol-
masi i¢in gerek ve yeter sartin her sag modiiliin M-temel projektif oldugu elde edilmistir.

REFERENCES

[1] N. Agayev, S. Halicioglu and A. Harmanci, On Rickart modules, Bulletin of the Iranian
Mathematical Society, 38(2) (2012), 433-445.

[2] N. Agayev, T. Ozen and A. Harmanci, On a Class of Semicommutative Modules, Proc. Indian
Acad. Sci. 119(2009), 149-158.

[3] 1. Kaplansky, Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.

[4] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math.
Bull. 14(1971), 359-368.

[5] G. Lee, S. T. Rizvi and C. S. Roman, Rickart Modules, Comm. Algebra 38(11)2010, 4005-
4027.

[6] M. B. Rege and S. Chhawchharia, Armendariz Rings, Proc. Japan Acad. Ser. A Math. Sci.
73(1997), 14-17.

[7] S. T. Rizvi and C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra 32(2004),
103-123.

[8] S. T. Rizviand C. S. Roman, On direct sums of Baer modules, J. Algebra 321(2009), 682-696.

[9] H. Tansee and S. Wongwai, A note on semi-projective modules, Kyungpook Math. J.
42(2002), 369-380.

Current address:, Burcu Ungor, Sait Halicioglu : Ankara University, Faculty of Sciences, Dept.
of Mathematics, Ankara, TURKEY ., Gizem Kafkas: Department of Mathematics, Izmir Institute
of Technology, TURKEY., Abdullah Harmanci: Department of Mathematics, Hacettepe Univer-
sity, TURKEY.
E-mail address: bungor@science.ankara.edu.tr, gizemkafkas@iyte.edu.tr, halici@ankara.edu.tr,
harmanci@hacettepe.edu.tr

URL: http://communications.science.ankara.edu.tr/index.php?series=A1



