Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/10257
Title: Bone marrow stem cells adapt to low-magnitude vibrations by altering their cytoskeleton during quiescence and osteogenesis
Authors: Demiray, Levent
Özçivici, Engin
Keywords: Mesenchymal stem cells
Mechanical signals
Osteogenic commitment
Cytoskeleton
Publisher: TUBITAK
Abstract: Application of mechanical vibrations is anabolic to bone tissue, not only by guiding mature bone cells to increased formation, but also by increasing the osteogenic commitment of progenitor cells. However, the sensitivity and adaptive response of bone marrow stem cells to this loading regimen has not yet been identified. In this study, we subjected mouse bone marrow stem cell line D1-ORL-UVA to daily mechanical vibrations (0.15 g, 90 Hz, 15 min/day) for 7 days, both during quiescence and osteogenic commitment, to identify corresponding ultrastructural adaptations on cellular and molecular levels. During quiescence, mechanical vibrations significantly increased total actin content and actin fiber thickness, as measured by phalloidin staining and fluorescent microscopy. Cellular height also increased, as measured by atomic force microscopy, along with the expression of focal adhesion kinase (PTK2) mRNA levels. During osteogenesis, mechanical vibrations increased the total actin content, actin fiber thickness, and cytoplasmic membrane roughness, with significant increase in Runx2 mRNA levels. These results show that bone marrow stem cells demonstrate similar cytoskeletal adaptations to low-magnitude high-frequency mechanical loads both during quiescence and osteogenesis, potentially becoming more sensitive to additional loads by increased structural stiffness.
URI: https://doi.org/10.3906/biy-1404-35
https://hdl.handle.net/11147/10257
https://search.trdizin.gov.tr/yayin/detay/214435
ISSN: 1300-0152
1303-6092
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
biy-39-1-10-1404-35.pdf1.48 MBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

28
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

26
checked on Nov 9, 2024

Page view(s)

710
checked on Nov 18, 2024

Download(s)

208
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.