Ferromagnetism Above 200 K in Organic-Ion Intercalated CrSBr
| dc.contributor.author | Ferreira-Teixeira, Sofia | |
| dc.contributor.author | Tezze, Daniel | |
| dc.contributor.author | Ramos, Maria | |
| dc.contributor.author | Alvarez-Garcia, Covadonga | |
| dc.contributor.author | Bayindir, Bertug | |
| dc.contributor.author | Jo, Junhyeon | |
| dc.contributor.author | Gobbi, Marco | |
| dc.date.accessioned | 2025-10-25T17:40:53Z | |
| dc.date.available | 2025-10-25T17:40:53Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | CrSBr is a van der Waals magnetic semiconductor exhibiting antiferromagnetic order below 140 K. It has emerged as a promising platform for engineering 2D magnetism because its intertwined electronic, optical, and magnetic properties can be profoundly modified via external stimuli such as electrical gating or magnetic fields. However, other strategies for tuning magnetism in layered materials, such as molecular intercalation, remain largely unexplored for CrSBr. Here, we demonstrate that the intercalation of tetramethylammonium (TMA) and tetrapropylammonium (TPA) ions into CrSBr induces a transition from antiferromagnetic to ferromagnetic order, while significantly enhancing the magnetic transition temperature to 190 K (TMA) and 230 K (TPA). The resulting intercalates are air-stable and exhibit large, hysteretic magnetoresistance exceeding 60% at 50 K in the TPA case. Besides, intercalation introduces symmetry-breaking structural changes in each CrSBr plane, revealed by Raman microscopy and corroborated by density functional theory (DFT) calculations. These findings highlight molecular intercalation as a powerful and versatile route to tailor the magnetic properties of CrSBr and unlock its potential to fabricate robust, high-temperature 2D magnetic devices. | en_US |
| dc.description.sponsorship | European Commission [PID2021-128004NB-C21, PID2021-122511OB-I00, PID2024-157558NB-C22, PID2024-157558NB-C21, PID2024-155708OB-I00, MCIN/AEI/10.13039/501100011033]; ERDF A way of making Europe [CEX2020-001038-M, CEX2024-001467-M]; Maria de Maeztu Units of Excellence Programme; FLAG-ERA grant MULTISPIN, via the Spanish MCIN/AEI [PCI2021-122038-2A]; European Union [101106104 CHEERS, MICIU/AEI/10.13039/501100011033]; European Union NextGenerationEU/PRTR [RYC2021-034836-I, RYC2021-031705-I]; UPV/EHU research project [EHU-N23/52] | en_US |
| dc.description.sponsorship | The authors acknowledge technical support from Roger Llopis. This work was supported under Projects PID2021-128004NB-C21, PID2021-122511OB-I00, PID2024-157558NB-C22, PID2024-157558NB-C21, and PID2024-155708OB-I00 funded by Spanish MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe; and under the Maria de Maeztu Units of Excellence Programme (Grant CEX2020-001038-M and CEX2024-001467-M). This work was also supported by the FLAG-ERA grant MULTISPIN, via the Spanish MCIN/AEI with grant number PCI2021-122038-2A. S.F.-T. acknowledges financial support from the European Union via Marie Sk & lstrok;odowska-Curie grant agreement number 101106104 CHEERS. B.M.-G. and M.G. thank support from "Ramon y Cajal" Programme by the Spanish MICIU/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR (grant nos. RYC2021-034836-I and RYC2021-031705-I, respectively). M.O. acknowledges the support from the UPV/EHU research project (EHU-N23/52). | en_US |
| dc.identifier.doi | 10.1021/acsnano.5c08747 | |
| dc.identifier.issn | 1936-0851 | |
| dc.identifier.issn | 1936-086X | |
| dc.identifier.uri | https://doi.org/10.1021/acsnano.5c08747 | |
| dc.identifier.uri | https://hdl.handle.net/11147/18540 | |
| dc.language.iso | en | en_US |
| dc.publisher | Amer Chemical Soc | en_US |
| dc.relation.ispartof | ACS Nano | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Van Der Waals Magnets | en_US |
| dc.subject | CrsBr | en_US |
| dc.subject | Molecular Intercalation | en_US |
| dc.subject | Ferromagnetism | en_US |
| dc.subject | Magnetotransport | en_US |
| dc.subject | Air-Stability | en_US |
| dc.title | Ferromagnetism Above 200 K in Organic-Ion Intercalated CrSBr | |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.description.department | İzmir Institute of Technology | en_US |
| gdc.description.departmenttemp | [Ferreira-Teixeira, Sofia; Tezze, Daniel; Ramos, Maria; Alvarez-Garcia, Covadonga; Jo, Junhyeon; Martin-Garcia, Beatriz; Casanova, Felix; Hueso, Luis E.] CIC NanoGUNE BRTA, Donostia San Sebastian 20018, Spain; [Tezze, Daniel; Alvarez-Garcia, Covadonga; Ormaza, Maider] Fac Quim UPV EHU, Dept Polimeros & Mat Avanzados Fis Quim & Tecnol, Donostia San Sebastian 20018, Spain; [Ramos, Maria; Gobbi, Marco] CSIC UPV EHU, Ctr Fis Mat CFM MPC, Donostia San Sebastian 20018, Spain; [Sahin, Hasan] Izmir Inst Technol, Dept Photon, TR-35430 Izmir, Turkiye; [Bayindir, Bertug] Izmir Inst Technol, Dept Phys, TR-35430 Izmir, Turkiye; [Jo, Junhyeon] Jeonbuk Natl Univ, Div Adv Mat Engn, Jeonju 54896, Jeonbuk, South Korea; [Martin-Garcia, Beatriz; Casanova, Felix; Hueso, Luis E.; Gobbi, Marco] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain; [Manas-Valero, Samuel; Coronado, Eugenio] Univ Valencia, Inst Ciencia Mol ICMol, Paterna 46980, Spain | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.pmid | 41065106 | |
| gdc.identifier.wos | WOS:001590516500001 |