Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Well-Defined Cholesterol Polymers With Ph-Controlled Membrane Switching Activity

Loading...
Thumbnail Image

Date

2012-10

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Cholesterol has been used as an effective component of therapeutic delivery systems because of its ability to cross cellular membranes. Considering this, well-defined copolymers of methacrylic acid and cholesteryl methacrylate, poly(methacrylic acid-co-cholesteryl methacrylate) P(MAA-co-CMA), were generated as potential delivery system components for pH-controlled intracellular delivery of therapeutics. Statistical copolymers with varying cholesterol contents (2, 4, and 8 mol %) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Dynamic light scattering (DLS) analysis showed that the hydrodynamic diameters of the copolymers in aqueous solutions ranged from 5 ± 0.3 to 7 ± 0.4 nm for the copolymers having 2 and 4 mol % CMA and 8 ± 1.1 to 13 ± 1.9 nm for the copolymer having 8 mol % CMA with increasing pH (pH 4.5-7.4). Atomic force microscopy (AFM) analysis revealed that the copolymer having 8 mol % CMA formed supramolecular assemblies while the copolymers having 2 and 4 mol % CMA existed as unimers in aqueous solution. The pH-responsive behavior of the copolymers was investigated via UV-visible spectroscopy revealing phase transitions at pH 3.9 for 2 mol % CMA, pH 4.7 for 4 mol % CMA, and pH 5.4 for 8 mol % CMA. Lipid bilayers and liposomes as models for cellular membranes were generated to probe their interactions with the synthesized copolymers. The interactions were determined in a pH-dependent manner (at pH 5.0 and 7.4) using surface plasmon resonance (SPR) spectroscopy and liposome leakage assay. Both the SPR analyses and liposome leakage assays indicated that the copolymer containing 2 mol % CMA displayed the greatest polymer-lipid interactions at pH 5.0, presenting the highest binding ability to the lipid bilayer surfaces, and also demonstrating the highest membrane destabilization activity. CellTiter-Blue assay showed that the copolymers did not affect the cell viability up to 30 μM over a period of 72 h. © 2012 American Chemical Society.

Description

Keywords

Copolymers, Cell membranes, Cholesteryl methacrylate, Cholesterol, Ultraviolet visible spectroscopy, Switching activities

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Sevimli, S., İnci, F., Zareie, H. M., and Bulmuş, V. (2012). Well-defined cholesterol polymers with pH-controlled membrane switching activity. Biomacromolecules, 13(10), 3064-3075. doi:10.1021/bm300846e

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
42

Source

Biomacromolecules

Volume

13

Issue

10

Start Page

3064

End Page

3075
SCOPUS™ Citations

42

checked on Sep 22, 2025

Web of Science™ Citations

41

checked on Sep 22, 2025

Page Views

930

checked on Sep 22, 2025

Downloads

613

checked on Sep 22, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.923

Sustainable Development Goals

SDG data is not available