Creatinine-On Colorimetric Elisa-Based Serum Creatinine Detection in a Microfluidic Device

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Soc Chemistry

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Chronic kidney diseases (CKDs), which often end in kidney failure for many people around the world, have an important place in public health given that they also trigger other diseases. Therefore, the development of fast and cost-effective diagnostic technologies enables effective monitoring of patients and early diagnosis. Here, using the Enzyme-Linked Immunosorbent Assay (ELISA) principle, serum creatinine concentrations were determined using the developed lab-on-a-chip (LOC) platform. In this system, which was termed "creatinine-on-a-chip", colorimetric ELISA protocol was applied to determine creatinine levels in a microfluidic chip functionalized with creatinine-specific antibodies. Creatinine detection was performed by quantifying the absorbance difference between the detection and reference channels, normalized to the reference signal within the microfluidic chip. The detection signal intensity varied depending on the region selected along the microfluidic channel. The adsorption of the capture antibody used for surface functionalization, which was particularly more pronounced near the inlet region, played a critical role in the detection signal. These findings suggest that random selection of the detection area can lead to significant signal variability, and that careful selection of a well-characterized region is essential for improving detection performance. With this developed system, creatinine was detected with high sensitivity in the linear range of 1-20 mu g mL-1, both spiked in phosphate buffered saline (PBS) and fetal bovine serum (FBS). Using the creatinine-on-a-chip, serum creatinine analysis can be performed rapidly (similar to 15 min) in a cost-effective manner ($1.05 per test).

Description

Karakuzu, Betul/0000-0001-6517-7251

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2

Source

Analyst

Volume

150

Issue

19

Start Page

4395

End Page

4403

Sustainable Development Goals