Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Decoding and Predicting the Attributes of Urban Public Spaces With Soft Computing Models and Space Syntax Approaches

dc.contributor.author Yönder, Veli Mustafa
dc.contributor.author Doğan, Fehmi
dc.contributor.author Çavka, Hasan Burak
dc.contributor.author Tayfur, Gökmen
dc.contributor.author Dülgeroğlu, Özüm
dc.contributor.other 02.02. Department of Architecture
dc.contributor.other 03.03. Department of Civil Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.contributor.other 02. Faculty of Architecture
dc.date.accessioned 2023-11-11T08:56:21Z
dc.date.available 2023-11-11T08:56:21Z
dc.date.issued 2023
dc.description 41st Conference on Education and Research in Computer Aided Architectural Design in Europe, eCAADe 2023 -- 20 September 2023 through 22 September 2023 en_US
dc.description.abstract People spend a considerable amount of time in public spaces for a variety of reasons, albeit at various times of the day and during season. Therefore, it is of utmost importance for both urban designers and local authorities to try to gain an understanding of the architectural qualities of these spaces. Within the scope of this study, squares and green parks in Izmir, the third largest city in Turkey, were analyzed in terms of their dimensions, landscape characteristics, the quality of their semi-open spaces, their landmarks, accessibility, and overall aesthetic quality. Using linear predictor, general regression neural networks, multilayer feed-forward neural networks (2-3-4-5-6 nodes), and genetic algorithms, soft computing models were trained in accordance with the results of the conducted analyses. Meanwhile, using space syntax methodologies, a visibility graph analysis and axial map analysis were conducted. The training results (i.e., root mean square error, mean absolute error, bad prediction rates for testing and training phases, and standard deviation of absolute error) were obtained in a comparative table based on training times and root mean square error values. According to the benchmarking table, the network that most accurately predicts the aesthetic score is the 2-node MLFNN, whereas the 6-node MLFN network is the least successful network. © 2023, Education and research in Computer Aided Architectural Design in Europe. All rights reserved. en_US
dc.identifier.doi 10.52842/conf.ecaade.2023.2.761
dc.identifier.isbn 9789491207341
dc.identifier.issn 2684-1843
dc.identifier.scopus 2-s2.0-85171850081
dc.identifier.uri https://doi.org/10.52842/conf.ecaade.2023.2.761
dc.identifier.uri https://hdl.handle.net/11147/14052
dc.language.iso en en_US
dc.publisher Education and research in Computer Aided Architectural Design in Europe en_US
dc.relation.ispartof Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Architectural aesthetics en_US
dc.subject General regression neural net en_US
dc.subject Multilayer perceptron en_US
dc.subject Spatial configuration en_US
dc.title Decoding and Predicting the Attributes of Urban Public Spaces With Soft Computing Models and Space Syntax Approaches en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id 0000-0003-4754-1907
gdc.author.id 0000-0002-8923-4641
gdc.author.id 0000-0001-9712-4031
gdc.author.institutional Çavka, Hasan Burak
gdc.author.institutional Tayfur, Gökmen
gdc.author.institutional Doğan, Fehmi
gdc.author.institutional Yönder, Veli Mustafa
gdc.author.scopusid 58612439800
gdc.author.scopusid 35387836500
gdc.author.scopusid 56743322000
gdc.author.scopusid 6701638605
gdc.author.scopusid 58611481100
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department İzmir Institute of Technology. Architecture en_US
gdc.description.department İzmir Institute of Technology. Civil Engineering en_US
gdc.description.endpage 768 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 761 en_US
gdc.description.volume 1 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4386815029
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.scopus.citedcount 1
relation.isAuthorOfPublication 7125985e-aa20-435a-a2c0-55c5fbb8e9d2
relation.isAuthorOfPublication c04aa74a-2afd-4ce1-be50-e0f634f7c53d
relation.isAuthorOfPublication eec60ef6-9cc1-4f26-ab6f-b322ffc75312
relation.isAuthorOfPublication 2cddd197-f127-4b3f-83ac-c014a7bdeb4d
relation.isAuthorOfPublication.latestForDiscovery 7125985e-aa20-435a-a2c0-55c5fbb8e9d2
relation.isOrgUnitOfPublication 9af2b05f-28ac-4026-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4020-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4006-8abe-a4dfe194da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4026-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ecaade2023_186.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format