Beyond Traditional Dentistry: How Organoids and Next-Gen Hydrogels Are Redesigning Dental Tissue Regeneration

No Thumbnail Available

Date

2026

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Dental tissue regeneration has advanced rapidly with the development of bioengineered hydrogels and organoid technologies. In this review, multifunctional hydrogels are examined as biomimetic platforms with osteoinductive, adhesive, angiogenic, antimicrobial, and immunomodulatory properties tailored to enamel, dentin-pulp complex, periodontal ligament, and alveolar bone repair. Incorporation of bioactive molecules, including growth factors, bioceramics, antioxidants, and immune-modulating agents, has been reported to enhance tissue-specific regeneration while mitigating infection and inflammation. Stimuli-responsive designs have been utilized to enable spatiotemporally controlled delivery and degradation. Immunomodulatory hydrogels also have been shown to direct macrophage polarization, regulate T-cell infiltration, and promote matrix remodeling. Furthermore, organoid models supported by hydrogels have been employed to replicate dental tissue architecture, guide lineage-specific differentiation, and provide reproducible, physiologically relevant platforms for drug screening and developmental studies. Emerging strategies such as microfluidic organoid-on-chip systems and mechanically stimulated cultures are noted for their potential to provide more physiologically relevant models. Early clinical studies involving hydrogel-based scaffolds and stem cell constructs are discussed, indicating growing translational potential. Overall, these developments highlights that how advanced hydrogels and organoid systems can contribute to a shift from conventional restorative methods toward tissue engineering-based regenerative therapies.

Description

Keywords

Dental Regeneration, Hydrogels, Dental Tissue Engineering, Organoids, Clinical Translation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Biomaterials Advances

Volume

179

Issue

Start Page

End Page

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 1

Page Views

2

checked on Oct 29, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.