Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On the Non-Linear Integral Equation Method for the Reconstruction of an Inclusion in the Elastic Body

dc.contributor.author Chapko, R. S.
dc.contributor.author Yaman, Olha Ivanyshyn
dc.contributor.author Vavrychuk, V. G.
dc.contributor.other 04.02. Department of Mathematics
dc.contributor.other 04. Faculty of Science
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2020-07-25T22:03:48Z
dc.date.available 2020-07-25T22:03:48Z
dc.date.issued 2019
dc.description Vavrychuk, Vasyl/0000-0002-8314-6931 en_US
dc.description WOS: 000471789500002 en_US
dc.description.abstract We apply the non-linear integral equation approach based on elastic potentials for determining the shape of a bounded object in the elastostatic two-dimensional domain from given Cauchy data on its boundary. The iterative algorithm is developed for the numerical solution of obtained integral equations. We find the Frechet derivative for the corresponding operator and show unique solviability of the linearized system. Full discretization of the system is realized by a trigonometric quadrature method. Due to the inherited ill-possedness in the system of linear equations we apply the Tikhonov regularization. The numerical results show that the proposed method gives a good accuracy of reconstructions with an economical computational cost. en_US
dc.identifier.issn 0868-6912
dc.identifier.uri https://hdl.handle.net/11147/9118
dc.language.iso en en_US
dc.publisher Ivan Franko National University of Lviv, en_US
dc.relation.ispartof Journal of Numerical and Applied Mathematics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Double connected elastostatic domain en_US
dc.subject boundary reconstruction en_US
dc.subject elastic potentials en_US
dc.subject boundary integral equations en_US
dc.subject trigonometric quadrature method en_US
dc.subject Newton method en_US
dc.subject Tikhonov regularization en_US
dc.title On the Non-Linear Integral Equation Method for the Reconstruction of an Inclusion in the Elastic Body en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Yaman, Olha Ivanyshyn
gdc.author.institutional Ivanyshyn Yaman, Olha
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Institute of Technology. Mathematics en_US
gdc.description.departmenttemp [Chapko, R. S.; Vavrychuk, V. G.] Ivan Franko Natl Univ Lviv, Fac Appl Math & Informat, 1 Univ Ska Str, UA-79000 Lvov, Ukraine; [Yaman, O. M. Ivanyshyn] Izmir Inst Technol, Dept Math, TR-35430 Izmir, Turkey en_US
gdc.description.endpage 17 en_US
gdc.description.issue 130 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 7 en_US
gdc.description.volume 1 en_US
gdc.identifier.wos WOS:000471789500002
gdc.wos.citedcount 1
relation.isAuthorOfPublication 219b7b9f-b132-4267-8aea-03455dff75a7
relation.isAuthorOfPublication.latestForDiscovery 219b7b9f-b132-4267-8aea-03455dff75a7
relation.isOrgUnitOfPublication 9af2b05f-28ac-4012-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4005-8abe-a4dfe193da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4012-8abe-a4dfe192da5e

Files