Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On Classification of Sequences Containing Arbitrarily Long Arithmetic Progressions

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publishing

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Organizational Unit

Journal Issue

Abstract

In this paper, we study the classification of sequences containing arbitrarily long arithmetic progressions. First, we deal with the question how the polynomial map n(s) can be extended so that it contains arbitrarily long arithmetic progressions. Under some growth conditions, we construct sequences which contain arbitrarily long arithmetic progressions. Also, we give a uniform and explicit arithmetic progression rank bound for a large class of sequences. Consequently, a dichotomy result is deduced on the finiteness of the arithmetic progression rank of certain sequences. Therefore, in this paper, we see a way to determine the finiteness of the arithmetic progression rank of various sequences satisfying some growth conditions.

Description

Keywords

Arithmetic progressions, AP-rank, van der Waerden's theorem

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

International Journal of Number Theory

Volume

Issue

Start Page

End Page

Page Views

157

checked on Sep 11, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data is not available