Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Bayesian Volterra System Identification Using Reversible Jump Mcmc Algorithm

dc.contributor.author Karakuş, Oktay
dc.contributor.author Kuruoğlu, Ercan Engin
dc.contributor.author Altınkaya, Mustafa Aziz
dc.contributor.other 03.05. Department of Electrical and Electronics Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.coverage.doi 10.1016/j.sigpro.2017.05.031
dc.date.accessioned 2018-01-08T11:03:22Z
dc.date.available 2018-01-08T11:03:22Z
dc.date.issued 2017-12
dc.description.abstract Volterra systems have had significant success in modelling nonlinear systems in various real-world applications. However, it is generally assumed that the nonlinearity degree of the system is known beforehand. In this paper, we contribute to the literature on Volterra system identification (VSI) with a numerical Bayesian approach which identifies model coefficients and the nonlinearity degree concurrently. Although this numerical Bayesian method, namely reversible jump Markov chain Monte Carlo (RJMCMC) algorithm has been used with success in various model selection problems, our use is in a novel context in the sense that both memory size and nonlinearity degree are estimated. The aforementioned study ensures an anomalous approach to RJMCMC and provides a new understanding on its flexible use which enables trans-structural transitions between different classes of models in addition to transdimensional transitions for which it is classically used. We study the performance of the method on synthetically generated data including OFDM communications over a nonlinear channel. en_US
dc.identifier.citation Karakuş, O., Kuruoğlu, E. E., and Altınkaya, M. A. (2017). Bayesian Volterra system identification using reversible jump MCMC algorithm. Signal Processing, 141, 125-136. doi:10.1016/j.sigpro.2017.05.031 en_US
dc.identifier.doi 10.1016/j.sigpro.2017.05.031 en_US
dc.identifier.issn 0165-1684
dc.identifier.scopus 2-s2.0-85020312846
dc.identifier.uri http://doi.org/10.1016/j.sigpro.2017.05.031
dc.identifier.uri http://hdl.handle.net/11147/6656
dc.language.iso en en_US
dc.publisher Elsevier Ltd. en_US
dc.relation.ispartof Signal Processing en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Channel estimation en_US
dc.subject Nonlinearity degree estimation en_US
dc.subject Reversible jump MCMC en_US
dc.subject Volterra system identification en_US
dc.subject Bayesian Networks en_US
dc.title Bayesian Volterra System Identification Using Reversible Jump Mcmc Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id TR179468
gdc.author.id TR114046
gdc.author.institutional Karakuş, Oktay
gdc.author.institutional Altınkaya, Mustafa Aziz
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Institute of Technology. Electrical and Electronics Engineering en_US
gdc.description.endpage 136 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 125 en_US
gdc.description.volume 141 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2620693037
gdc.identifier.wos WOS:000406987500011
gdc.openalex.fwci 0.972
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 11
relation.isAuthorOfPublication f1af9899-f78f-4159-b057-398ddee3f8e1
relation.isAuthorOfPublication.latestForDiscovery f1af9899-f78f-4159-b057-398ddee3f8e1
relation.isOrgUnitOfPublication 9af2b05f-28ac-4018-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4018-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
6656.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
Makale

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: