Bayesian Volterra System Identification Using Reversible Jump Mcmc Algorithm
dc.contributor.author | Karakuş, Oktay | |
dc.contributor.author | Kuruoğlu, Ercan Engin | |
dc.contributor.author | Altınkaya, Mustafa Aziz | |
dc.contributor.other | 03.05. Department of Electrical and Electronics Engineering | |
dc.contributor.other | 03. Faculty of Engineering | |
dc.contributor.other | 01. Izmir Institute of Technology | |
dc.coverage.doi | 10.1016/j.sigpro.2017.05.031 | |
dc.date.accessioned | 2018-01-08T11:03:22Z | |
dc.date.available | 2018-01-08T11:03:22Z | |
dc.date.issued | 2017-12 | |
dc.description.abstract | Volterra systems have had significant success in modelling nonlinear systems in various real-world applications. However, it is generally assumed that the nonlinearity degree of the system is known beforehand. In this paper, we contribute to the literature on Volterra system identification (VSI) with a numerical Bayesian approach which identifies model coefficients and the nonlinearity degree concurrently. Although this numerical Bayesian method, namely reversible jump Markov chain Monte Carlo (RJMCMC) algorithm has been used with success in various model selection problems, our use is in a novel context in the sense that both memory size and nonlinearity degree are estimated. The aforementioned study ensures an anomalous approach to RJMCMC and provides a new understanding on its flexible use which enables trans-structural transitions between different classes of models in addition to transdimensional transitions for which it is classically used. We study the performance of the method on synthetically generated data including OFDM communications over a nonlinear channel. | en_US |
dc.identifier.citation | Karakuş, O., Kuruoğlu, E. E., and Altınkaya, M. A. (2017). Bayesian Volterra system identification using reversible jump MCMC algorithm. Signal Processing, 141, 125-136. doi:10.1016/j.sigpro.2017.05.031 | en_US |
dc.identifier.doi | 10.1016/j.sigpro.2017.05.031 | en_US |
dc.identifier.issn | 0165-1684 | |
dc.identifier.scopus | 2-s2.0-85020312846 | |
dc.identifier.uri | http://doi.org/10.1016/j.sigpro.2017.05.031 | |
dc.identifier.uri | http://hdl.handle.net/11147/6656 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd. | en_US |
dc.relation.ispartof | Signal Processing | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Channel estimation | en_US |
dc.subject | Nonlinearity degree estimation | en_US |
dc.subject | Reversible jump MCMC | en_US |
dc.subject | Volterra system identification | en_US |
dc.subject | Bayesian Networks | en_US |
dc.title | Bayesian Volterra System Identification Using Reversible Jump Mcmc Algorithm | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
gdc.author.id | TR179468 | |
gdc.author.id | TR114046 | |
gdc.author.institutional | Karakuş, Oktay | |
gdc.author.institutional | Altınkaya, Mustafa Aziz | |
gdc.coar.access | open access | |
gdc.coar.type | text::journal::journal article | |
gdc.description.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
gdc.description.endpage | 136 | en_US |
gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
gdc.description.scopusquality | Q1 | |
gdc.description.startpage | 125 | en_US |
gdc.description.volume | 141 | en_US |
gdc.description.wosquality | Q2 | |
gdc.identifier.openalex | W2620693037 | |
gdc.identifier.wos | WOS:000406987500011 | |
gdc.openalex.fwci | 0.972 | |
gdc.openalex.normalizedpercentile | 0.67 | |
gdc.opencitations.count | 10 | |
gdc.scopus.citedcount | 10 | |
gdc.wos.citedcount | 11 | |
relation.isAuthorOfPublication | f1af9899-f78f-4159-b057-398ddee3f8e1 | |
relation.isAuthorOfPublication.latestForDiscovery | f1af9899-f78f-4159-b057-398ddee3f8e1 | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4018-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4004-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4003-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9af2b05f-28ac-4018-8abe-a4dfe192da5e |