Automatic Question Generation Using Natural Language Processing Techniques

dc.contributor.advisor Tuğlular, Tuğkan
dc.contributor.advisor Tekir, Selma
dc.contributor.author Keklik, Onur
dc.contributor.other 03.04. Department of Computer Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2018-10-31T11:27:11Z
dc.date.available 2018-10-31T11:27:11Z
dc.date.issued 2018-07
dc.description Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2018 en_US
dc.description Includes bibliographical references (leaves: 37-41) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description.abstract This thesis proposes a new rule based approach to automatic question generation. The proposed approach focuses on analysis of both syntactic and semantic structure of a sentence. The design and implementation of the proposed approach are also explained in detail. Although the primary objective of the designed system is question generation from sentences, automatic evaluation results shows that, it also achieves great performance on reading comprehension datasets, which focus on question generation from paragraphs. With respect to human evaluations, the designed system significantly outperforms all other systems and generated the most natural (human-like) questions. en_US
dc.description.abstract Bu tez otomatik soru üretimi için yeni bir kural tabanlı yaklaşım önermektedir. Önerilen yaklaşım, bir cümlenin hem sözdizimsel hem de semantik yapısının analizine odaklanmaktadır. Ayrıca, önerilen yaklaşımın tasarımı ve uygulanması ayrıntılı olarak açıklanmıştır. Tasarlanan sistemin temel amacı cümlelerden soru üretmek olmasına rağmen, otomatik değerlendirme sonuları, sistemin anlama becerisi gerektiren paragraflar üzerinde de büyük bir performans sergilediğini gösterdi. İnsan değerlendirmelerine gelince, tasarlanan sistem diğer tüm sistemlerden önemli ölçüde daha iyi bir performans gösterdi ve en doğal (insan benzeri) soruları üretti. en_US
dc.format.extent xi, 41 leaves
dc.identifier.citation Keklik, O. (2018). Automatic question generation using natural language processing techniques. Unpublished master's thesis, Izmir Institute of Technology, Izmir, Turkey en_US
dc.identifier.uri https://hdl.handle.net/11147/6938
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Question generation en_US
dc.subject Named Entity Recognition en_US
dc.subject Question answering en_US
dc.subject Automatic evaluation en_US
dc.subject Semantic role labeling en_US
dc.title Automatic Question Generation Using Natural Language Processing Techniques en_US
dc.title.alternative Doğal Dil İşleme Tekniklerini Kullanarak Otomatik Soru Üretme en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Keklik, Onur
gdc.author.institutional Tuğlular, Tuğkan
gdc.author.institutional Tekir, Selma
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Thesis (Master)--İzmir Institute of Technology, Computer Engineering en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
relation.isAuthorOfPublication 7f52fb71-3121-46a6-a461-2ff1b28d9fa1
relation.isAuthorOfPublication 57639474-3954-4f77-a84c-db8a079648a8
relation.isAuthorOfPublication.latestForDiscovery 7f52fb71-3121-46a6-a461-2ff1b28d9fa1
relation.isOrgUnitOfPublication 9af2b05f-28ac-4014-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4014-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
T001801.pdf
Size:
558.7 KB
Format:
Adobe Portable Document Format
Description:
MasterThesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: