Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Optical Properties of Composites of Pmma and Surface-Modified Zincite Nanoparticles

Loading...
Thumbnail Image

Date

2007-02-20

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Locate full-text(opens in a new window)|Full Text(opens in a new window)|View at Publisher| Export | Download | Add to List | More... Macromolecules Volume 40, Issue 4, 20 February 2007, Pages 1089-1100 Optical properties of composites of PMMA and surface-modified zincite nanoparticles (Article) Demir, M.M.a, Koynov, K.a, Akbey, Ü.a, Bubeck, C.a, Park, I.ab, Lieberwirth, I.a, Wegner, G.a a Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany b Seoul National University, School of Chemistry, Korea, South Korea View references (65) Abstract Composites that show visible light transmittance, UV absorption, and moderately high refractive index, based on poly(methyl methacrylate) (PMMA) and zinc oxide (zincite, ZnO) nanoparticles, were prepared in two steps. First, surface-modified ZnO nanoparticles with 22 nm average diameter were nucleated by controlled precipitation via acid-catalyzed esterification of zinc acetate dihydrate with pentan-1-ol. The surface of growing crystalline particles was modified with tert-butylphosphonic acid (tBuPO3H2) in situ by monolayer coverage. Particle size and graft density of -PO3H 2 on the particle surface were controlled by the amount of surfactant applied to the reaction solution. Second, the surface-modified particles were incorporated into PMMA by in-situ bulk polymerization. Free radical polymerization was carried out in the presence of these particles using AIBN as initiator. Volume fraction (0) of the particles was varied from 0.10 to 7.76% (0.5 to 30 wt %). Although the particles are homogeneously dispersed in monomer, segregation of the individual particles upon polymerization was observed. Optical constants of the films ca. 2.0 μm including absorption and scattering efficiencies, indices of refraction, and dispersion constants were determined. The absorption coefficient at 350 nm increases linearly with ZnO, obeying Beer's law at low particle contents. However, it levels off toward a value of about 5000 cm-1 and shows a negative deviation at high concentrations because of aggregation of the individual particles. Waveguide propagation loss coefficients of the composite films were examined by prism coupling. A steep increase of the loss coefficient was found with a slope of 52 dB cm-1 vol %-1 as the volume fraction of the particle increases. The refractive index of the composites depends linearly on volume fraction of ZnO and varies from 1.487 to 1.507 (φ = 7.76%) at 633 nm. The dispersion of refractive index was found to be consistent with Cauchy's formula.

Description

Keywords

Esterification, Free radical polymerization, Light transmission, Nanostructures, Refractive index, Volume fraction, Zinc oxide, Polymethyl methacrylates

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Demir, M.M., Koynov, K., Akbey, Ü., Bubeck, C., Park, I., Lieberwirth, I., and Wegner, G. (2007). Optical properties of composites of PMMA and surface-modified zincite nanoparticles. Macromolecules, 40(4), 1089-1100. doi:10.1021/ma062184t

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
183

Source

Macromolecules

Volume

40

Issue

4

Start Page

1089

End Page

1100
Web of Science™ Citations

192

checked on Sep 22, 2025

Page Views

531

checked on Sep 22, 2025

Downloads

582

checked on Sep 22, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
7.871

Sustainable Development Goals

SDG data is not available