Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Adaptive Sign Algorithm for Graph Signal Processing

dc.contributor.author Yan, Yi
dc.contributor.author Kuruoğlu, Ercan Engin
dc.contributor.author Altınkaya, Mustafa Aziz
dc.contributor.other 03.05. Department of Electrical and Electronics Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2022-08-11T07:03:19Z
dc.date.available 2022-08-11T07:03:19Z
dc.date.issued 2022-06
dc.description.abstract Efficient and robust online processing techniques for irregularly structured data are crucial in the current era of data abundance. In this paper, we propose a graph/network version of the classical adaptive Sign algorithm for online graph signal estimation under impulsive noise. The recently introduced graph adaptive least mean squares algorithm is unstable under non-Gaussian impulsive noise and has high computational complexity. The Graph-Sign algorithm proposed in this work is based on the minimum dispersion criterion and therefore impulsive noise does not hinder its estimation quality. Unlike the recently proposed graph adaptive least mean pth power algorithm, our Graph-Sign algorithm can operate without prior knowledge of the noise distribution. The proposed Graph-Sign algorithm has a faster run time because of its low computational complexity compared to the existing adaptive graph signal processing algorithms. Experimenting on steady-state and time-varying graph signals estimation utilizing spectral properties of bandlimitedness and sampling, the Graph-Sign algorithm demonstrates fast, stable, and robust graph signal estimation performance under impulsive noise modeled by alpha stable, Cauchy, Student's t, or Laplace distributions. en_US
dc.description.volume 200 en_US
dc.identifier.doi 10.1016/j.sigpro.2022.108662
dc.identifier.issn 0165-1684
dc.identifier.scopus 2-s2.0-85132766958
dc.identifier.uri https://doi.org/10.1016/j.sigpro.2022.108662
dc.identifier.uri https://hdl.handle.net/11147/12301
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Signal Processing en_US
dc.relation.issn 0165-1684 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Adaptive filter en_US
dc.subject Graph signal processing en_US
dc.subject Impulsive noise en_US
dc.subject Sign algorithm en_US
dc.title Adaptive Sign Algorithm for Graph Signal Processing en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0001-8048-5850
gdc.author.institutional Altınkaya, Mustafa Aziz
gdc.author.institutional Altınkaya, Mustafa Aziz
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.contributor.affiliation Tsinghua University en_US
gdc.contributor.affiliation Tsinghua University en_US
gdc.contributor.affiliation 01. Izmir Institute of Technology en_US
gdc.description.department İzmir Institute of Technology. Electrical and Electronics Engineering en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.wosquality Q2
gdc.identifier.openalex W4221138852
gdc.identifier.wos WOS:000832869400009
gdc.openalex.fwci 2.018
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 16
gdc.scopus.citedcount 22
gdc.wos.citedcount 19
relation.isAuthorOfPublication f1af9899-f78f-4159-b057-398ddee3f8e1
relation.isAuthorOfPublication.latestForDiscovery f1af9899-f78f-4159-b057-398ddee3f8e1
relation.isOrgUnitOfPublication 9af2b05f-28ac-4018-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4018-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0165168422002018-main.pdf
Size:
2.43 MB
Format:
Adobe Portable Document Format
Description:
Article (Makale)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.2 KB
Format:
Item-specific license agreed upon to submission
Description: