Deep Convolutional Neural Networks for Viability Analysis Directly From Cell Holograms Captured Using Lensless Holographic Microscopy
dc.contributor.author | Delikoyun, Kerem | |
dc.contributor.author | Çine, Ersin | |
dc.contributor.author | Anıl İnevi, Müge | |
dc.contributor.author | Özçivici, Engin | |
dc.contributor.author | Özuysal, Mustafa | |
dc.contributor.author | Tekin, Hüseyin Cumhur | |
dc.contributor.other | 03.01. Department of Bioengineering | |
dc.contributor.other | 03.04. Department of Computer Engineering | |
dc.contributor.other | 03. Faculty of Engineering | |
dc.contributor.other | 01. Izmir Institute of Technology | |
dc.date.accessioned | 2021-01-24T18:29:05Z | |
dc.date.available | 2021-01-24T18:29:05Z | |
dc.date.issued | 2019 | |
dc.description | Chemical and Biological Microsystems Society (CBMS) | en_US |
dc.description.abstract | Cell viability analysis is one of the most widely used protocols in the fields of biomedical sciences. Traditional methods are prone to human error and require high-cost and bulky instrumentations. Lensless digital inline holographic microscopy (LDIHM) offers low-cost and high resolution imaging. However, recorded holograms should be digitally reconstructed to obtain real images, which requires intense computational work. We introduce a deep transfer learning-based cell viability classification method that directly processes the hologram without reconstruction. This new model is only trained once and viability of each cell can be predicted from its hologram. © 2019 CBMS-0001. | en_US |
dc.description.sponsorship | Financial support from The Scientific and Technological Research Council of Turkey (119M052) and Turkish Council of Higher Education for 100/2000 CoHE doctoral scholarship (K.D.) is gratefully acknowledged. | en_US |
dc.identifier.isbn | 978-173341900-0 | |
dc.identifier.scopus | 2-s2.0-85094963341 | |
dc.identifier.uri | https://hdl.handle.net/11147/9906 | |
dc.language.iso | en | en_US |
dc.publisher | The Chemical and Biological Microsystems Society (CBMS) | en_US |
dc.relation.ispartof | 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cell viability analysis | en_US |
dc.subject | Deep convolutional neural network | en_US |
dc.subject | Lensless holographic microscopy | en_US |
dc.title | Deep Convolutional Neural Networks for Viability Analysis Directly From Cell Holograms Captured Using Lensless Holographic Microscopy | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
gdc.author.institutional | Delikoyun, Kerem | |
gdc.author.institutional | Özçivici, Engin | |
gdc.author.institutional | Anıl İnevi, Müge | |
gdc.author.institutional | Delikoyun, Kerem | |
gdc.author.institutional | Özuysal, Mustafa | |
gdc.author.institutional | Tekin, Hüseyin Cumhur | |
gdc.author.institutional | Özuysal, Mustafa | |
gdc.author.institutional | Anıl İnevi, Müge | |
gdc.coar.access | metadata only access | |
gdc.coar.type | text::conference output | |
gdc.description.department | İzmir Institute of Technology. Bioengineering | en_US |
gdc.description.department | İzmir Institute of Technology. Computer Engineering | en_US |
gdc.description.endpage | 1463 | en_US |
gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
gdc.description.scopusquality | N/A | |
gdc.description.startpage | 1462 | en_US |
gdc.description.wosquality | N/A | |
gdc.scopus.citedcount | 0 | |
relation.isAuthorOfPublication | 0c7f7a76-790a-45e2-92fc-94ca6102564a | |
relation.isAuthorOfPublication | df1df10e-b80e-4993-8e20-40e345394795 | |
relation.isAuthorOfPublication | 31f6ede1-0379-4371-a9ca-4182a555003e | |
relation.isAuthorOfPublication | c5de0144-5a8c-4c0a-93b2-334507777064 | |
relation.isAuthorOfPublication | c71586de-0450-4429-8d49-a68c820ea797 | |
relation.isAuthorOfPublication.latestForDiscovery | 0c7f7a76-790a-45e2-92fc-94ca6102564a | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4015-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4014-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4004-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4003-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9af2b05f-28ac-4015-8abe-a4dfe192da5e |