Deep Convolutional Neural Networks for Viability Analysis Directly From Cell Holograms Captured Using Lensless Holographic Microscopy

dc.contributor.author Delikoyun, Kerem
dc.contributor.author Çine, Ersin
dc.contributor.author Anıl İnevi, Müge
dc.contributor.author Özçivici, Engin
dc.contributor.author Özuysal, Mustafa
dc.contributor.author Tekin, Hüseyin Cumhur
dc.contributor.other 03.01. Department of Bioengineering
dc.contributor.other 03.04. Department of Computer Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2021-01-24T18:29:05Z
dc.date.available 2021-01-24T18:29:05Z
dc.date.issued 2019
dc.description Chemical and Biological Microsystems Society (CBMS) en_US
dc.description.abstract Cell viability analysis is one of the most widely used protocols in the fields of biomedical sciences. Traditional methods are prone to human error and require high-cost and bulky instrumentations. Lensless digital inline holographic microscopy (LDIHM) offers low-cost and high resolution imaging. However, recorded holograms should be digitally reconstructed to obtain real images, which requires intense computational work. We introduce a deep transfer learning-based cell viability classification method that directly processes the hologram without reconstruction. This new model is only trained once and viability of each cell can be predicted from its hologram. © 2019 CBMS-0001. en_US
dc.description.sponsorship Financial support from The Scientific and Technological Research Council of Turkey (119M052) and Turkish Council of Higher Education for 100/2000 CoHE doctoral scholarship (K.D.) is gratefully acknowledged. en_US
dc.identifier.isbn 978-173341900-0
dc.identifier.scopus 2-s2.0-85094963341
dc.identifier.uri https://hdl.handle.net/11147/9906
dc.language.iso en en_US
dc.publisher The Chemical and Biological Microsystems Society (CBMS) en_US
dc.relation.ispartof 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cell viability analysis en_US
dc.subject Deep convolutional neural network en_US
dc.subject Lensless holographic microscopy en_US
dc.title Deep Convolutional Neural Networks for Viability Analysis Directly From Cell Holograms Captured Using Lensless Holographic Microscopy en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Delikoyun, Kerem
gdc.author.institutional Özçivici, Engin
gdc.author.institutional Anıl İnevi, Müge
gdc.author.institutional Delikoyun, Kerem
gdc.author.institutional Özuysal, Mustafa
gdc.author.institutional Tekin, Hüseyin Cumhur
gdc.author.institutional Özuysal, Mustafa
gdc.author.institutional Anıl İnevi, Müge
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department İzmir Institute of Technology. Bioengineering en_US
gdc.description.department İzmir Institute of Technology. Computer Engineering en_US
gdc.description.endpage 1463 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1462 en_US
gdc.description.wosquality N/A
gdc.scopus.citedcount 0
relation.isAuthorOfPublication 0c7f7a76-790a-45e2-92fc-94ca6102564a
relation.isAuthorOfPublication df1df10e-b80e-4993-8e20-40e345394795
relation.isAuthorOfPublication 31f6ede1-0379-4371-a9ca-4182a555003e
relation.isAuthorOfPublication c5de0144-5a8c-4c0a-93b2-334507777064
relation.isAuthorOfPublication c71586de-0450-4429-8d49-a68c820ea797
relation.isAuthorOfPublication.latestForDiscovery 0c7f7a76-790a-45e2-92fc-94ca6102564a
relation.isOrgUnitOfPublication 9af2b05f-28ac-4015-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4014-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4015-8abe-a4dfe192da5e

Files