A New Method for Gan-Based Data Augmentation for Classes With Distinct Clusters
dc.contributor.author | Kuntalp, Mehmet | |
dc.contributor.author | Düzyel, Okan | |
dc.contributor.other | 03.05. Department of Electrical and Electronics Engineering | |
dc.contributor.other | 03. Faculty of Engineering | |
dc.contributor.other | 01. Izmir Institute of Technology | |
dc.date.accessioned | 2023-10-03T07:16:29Z | |
dc.date.available | 2023-10-03T07:16:29Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Data augmentation is a commonly used approach for addressing the issue of limited data availability in machine learning. There are various methods available, including classical and modern techniques. However, when applying modern data augmentation methods, such as Generative Adversarial Neural Networks (GANs), to a class specific data, the resulting data can exhibit structural discrepancies. This study explores a different use of GANs as a data augmentation method that solves this problem using the electrocardiogram (ECG) signals in the MITBIH arrhythmia dataset as the example. We begin by examining the cluster structure of a specific class using tDistributed Stochastic Neighbor (t-SNE) method. Based on this cluster structure, we propose a new method for applying GANs to augment data for that class. We assess the effect of our method in a classification task using 1-D Convolutional Neural Network (CNN), Support Vector Machine (SVM), One vs one classifier (Ovo), K-Nearest Neighbors (KNN), and Random Forest as the classifiers. The results demonstrate that our proposed method could lead to better classification performance if a specific class has distinct clusters when compared to normal use of GANs. | en_US |
dc.identifier.doi | 10.1016/j.eswa.2023.121199 | |
dc.identifier.issn | 0957-4174 | |
dc.identifier.issn | 1873-6793 | |
dc.identifier.scopus | 2-s2.0-85168424458 | |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2023.121199 | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Ecg | en_US |
dc.subject | Generative Adversarial Neural Networks | en_US |
dc.subject | Data Augmentation | en_US |
dc.subject | T-Sne | en_US |
dc.title | A New Method for Gan-Based Data Augmentation for Classes With Distinct Clusters | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
gdc.author.id | 0000-0002-9123-3146 | |
gdc.author.institutional | Düzyel, Okan | |
gdc.author.institutional | Düzyel, Okan | |
gdc.author.wosid | W-4067-2017 | |
gdc.coar.access | metadata only access | |
gdc.coar.type | text::journal::journal article | |
gdc.description.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
gdc.description.departmenttemp | [Kuntalp, Mehmet] Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, Izmir, Turkiye; [Duzyel, Okan] Izmir Inst Technol, Dept Elect & Elect Engn, Izmir, Turkiye; [Kuntalp, Mehmet] Dokuz Eylul Univ, Elect & Elect Engn Dept, Izmir, Turkiye | en_US |
gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
gdc.description.scopusquality | Q1 | |
gdc.description.volume | 235 | en_US |
gdc.description.woscitationindex | Science Citation Index Expanded | |
gdc.description.wosquality | Q1 | |
gdc.identifier.openalex | W4385858630 | |
gdc.identifier.wos | WOS:001066101400001 | |
gdc.openalex.fwci | 6.85 | |
gdc.openalex.normalizedpercentile | 0.81 | |
gdc.opencitations.count | 12 | |
gdc.scopus.citedcount | 25 | |
gdc.wos.citedcount | 21 | |
relation.isAuthorOfPublication | f91aafc1-9437-405b-bbf7-51344a6961f7 | |
relation.isAuthorOfPublication.latestForDiscovery | f91aafc1-9437-405b-bbf7-51344a6961f7 | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4018-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4004-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4003-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9af2b05f-28ac-4018-8abe-a4dfe192da5e |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 13827.pdf
- Size:
- 5.28 MB
- Format:
- Adobe Portable Document Format
- Description:
- Article