Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A New Method for Gan-Based Data Augmentation for Classes With Distinct Clusters

dc.contributor.author Kuntalp, Mehmet
dc.contributor.author Düzyel, Okan
dc.contributor.other 03.05. Department of Electrical and Electronics Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2023-10-03T07:16:29Z
dc.date.available 2023-10-03T07:16:29Z
dc.date.issued 2024
dc.description.abstract Data augmentation is a commonly used approach for addressing the issue of limited data availability in machine learning. There are various methods available, including classical and modern techniques. However, when applying modern data augmentation methods, such as Generative Adversarial Neural Networks (GANs), to a class specific data, the resulting data can exhibit structural discrepancies. This study explores a different use of GANs as a data augmentation method that solves this problem using the electrocardiogram (ECG) signals in the MITBIH arrhythmia dataset as the example. We begin by examining the cluster structure of a specific class using tDistributed Stochastic Neighbor (t-SNE) method. Based on this cluster structure, we propose a new method for applying GANs to augment data for that class. We assess the effect of our method in a classification task using 1-D Convolutional Neural Network (CNN), Support Vector Machine (SVM), One vs one classifier (Ovo), K-Nearest Neighbors (KNN), and Random Forest as the classifiers. The results demonstrate that our proposed method could lead to better classification performance if a specific class has distinct clusters when compared to normal use of GANs. en_US
dc.identifier.doi 10.1016/j.eswa.2023.121199
dc.identifier.issn 0957-4174
dc.identifier.issn 1873-6793
dc.identifier.scopus 2-s2.0-85168424458
dc.identifier.uri https://doi.org/10.1016/j.eswa.2023.121199
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Ecg en_US
dc.subject Generative Adversarial Neural Networks en_US
dc.subject Data Augmentation en_US
dc.subject T-Sne en_US
dc.title A New Method for Gan-Based Data Augmentation for Classes With Distinct Clusters en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-9123-3146
gdc.author.institutional Düzyel, Okan
gdc.author.institutional Düzyel, Okan
gdc.author.wosid W-4067-2017
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Institute of Technology. Electrical and Electronics Engineering en_US
gdc.description.departmenttemp [Kuntalp, Mehmet] Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, Izmir, Turkiye; [Duzyel, Okan] Izmir Inst Technol, Dept Elect & Elect Engn, Izmir, Turkiye; [Kuntalp, Mehmet] Dokuz Eylul Univ, Elect & Elect Engn Dept, Izmir, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 235 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4385858630
gdc.identifier.wos WOS:001066101400001
gdc.openalex.fwci 6.85
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 12
gdc.scopus.citedcount 25
gdc.wos.citedcount 21
relation.isAuthorOfPublication f91aafc1-9437-405b-bbf7-51344a6961f7
relation.isAuthorOfPublication.latestForDiscovery f91aafc1-9437-405b-bbf7-51344a6961f7
relation.isOrgUnitOfPublication 9af2b05f-28ac-4018-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4018-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
13827.pdf
Size:
5.28 MB
Format:
Adobe Portable Document Format
Description:
Article