Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Enhancing Thickness Determination of Nanoscale Dielectric Films in Phase Diffraction-Based Optical Characterization Systems With Radial Basis Function Neural Networks

dc.contributor.author Ataç, Enes
dc.contributor.author Karatay, Anıl
dc.contributor.author Karatay, Anıl
dc.contributor.author Dinleyici, Mehmet Salih
dc.contributor.author Dinleyici, Mehmet Salih
dc.contributor.other 03.05. Department of Electrical and Electronics Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.contributor.other 03. Faculty of Engineering
dc.date.accessioned 2023-10-03T07:15:28Z
dc.date.available 2023-10-03T07:15:28Z
dc.date.issued 2023
dc.description.abstract Accurate determination of the optical properties of ultra-thin dielectric films is an essential and challenging task in optical fiber sensor systems. However, nanoscale thickness identification of these films may be laborious due to insufficient and protracted classical curve matching algorithms. Therefore, this experimental study presents an application of a radial basis function neural network in phase diffraction-based optical characterization systems to determine the thickness of nanoscale polymer films. The non-stationary measurement data with environmental and detector noise were subjected to a detailed analysis. The outcomes of this investigation are benchmarked against the linear discriminant analysis method and further verified by means of scanning electron microscopy. The results show that the neural network has reached a remarkable accuracy of 98% and 82.5%, respectively, in tests with simulation and experimental data. In this way, rapid and precise thickness estimation may be realized within the tolerance range of 25 nm, offering a significant improvement over conventional measurement techniques. en_US
dc.identifier.doi 10.1088/1361-6501/aced19
dc.identifier.issn 0957-0233
dc.identifier.issn 1361-6501
dc.identifier.scopus 2-s2.0-85167874117
dc.identifier.uri https://doi.org/10.1088/1361-6501/aced19
dc.identifier.uri https://hdl.handle.net/11147/13765
dc.language.iso en en_US
dc.publisher IOP Publishing en_US
dc.relation.ispartof Measurement Science and Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Phase diffraction en_US
dc.subject Neural networks en_US
dc.subject Optical fiber sensors en_US
dc.subject Optical characterization en_US
dc.title Enhancing Thickness Determination of Nanoscale Dielectric Films in Phase Diffraction-Based Optical Characterization Systems With Radial Basis Function Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-4516-3028
gdc.author.id 0000-0002-0694-610X
gdc.author.id 0000-0003-2807-3968
gdc.author.scopusid 57218106507
gdc.author.scopusid 57205629887
gdc.author.scopusid 6602810237
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Institute of Technology. Electrical and Electronics Engineering en_US
gdc.description.issue 12 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 34 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4385519864
gdc.identifier.wos WOS:001045220900001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
local.message.claim 2023-10-18T09:44:09.895+0300 *
local.message.claim |rp00047 *
local.message.claim |submit_approve *
local.message.claim |dc_contributor_author *
local.message.claim |None *
relation.isAuthorOfPublication 271e4fd4-3cf9-4a9d-b2f3-c84463596bb8
relation.isAuthorOfPublication 1f291d4a-56c6-4f1b-9b8c-3123f5209875
relation.isAuthorOfPublication.latestForDiscovery 271e4fd4-3cf9-4a9d-b2f3-c84463596bb8
relation.isOrgUnitOfPublication 9af2b05f-28ac-4018-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4018-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Ataç_2023_Meas._Sci._Technol.pdf
Size:
2 MB
Format:
Adobe Portable Document Format