Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Jet Energy Scale and Resolution in the Cms Experiment in Pp Collisions at 8 Tev

No Thumbnail Available

Date

2017

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing Ltd.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb(-1) collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity eta and transverse momentum (pT) are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) R, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Several new techniques are used to account for the various sources of jet energy scale corrections, and a full set of uncertainties, and their correlations, are provided. The final uncertainties on the jet energy scale are below 3% across the phase space considered by most analyses (p(T) > 30 GeV and vertical bar eta vertical bar < 5.0). In the barrel region (vertical bar eta vertical bar < 1.3) an uncertainty below 1% for p(T) > 30 GeV is reached, when excluding the jet flavor uncertainties, which are provided separately for different jet flavors. A new benchmark for jet energy scale determination at hadron colliders is achieved with 0.32% uncertainty for jets with p(T) of the order of 165-330 GeV, and vertical bar eta vertical bar < 0.8.

Description

Keywords

Large detector-systems performance, Performance of High Energy Physics Detectors

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q4

Scopus Q

Q3

Source

Journal of Instrumentation

Volume

12

Issue

Start Page

End Page

SCOPUS™ Citations

498

checked on Sep 14, 2025

Web of Science™ Citations

178

checked on Sep 14, 2025

Page Views

483

checked on Sep 14, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
37.075

Sustainable Development Goals

SDG data is not available