Proper Class Generated by Submodules That Have Supplements

dc.contributor.advisor Alizade, Rafail
dc.contributor.author Demirci, Yılmaz Mehmet
dc.contributor.author Alizade, Rafail
dc.contributor.other 04.02. Department of Mathematics
dc.contributor.other 04. Faculty of Science
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2014-07-22T13:52:49Z
dc.date.available 2014-07-22T13:52:49Z
dc.date.issued 2008
dc.description Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2008 en_US
dc.description Includes bibliographical references (leaves: 37-38) en_US
dc.description Text in English: Abstract: Turkish and English en_US
dc.description ix, 40 leaves en_US
dc.description.abstract In this thesis, we study the class S of all short exact sequences 0 A B C 0 where Im& has a supplement in B, i.e. a minimal elemenr in the set {V B V + Im& . B}.The corresponding elements of ExtR(C;A) are called k-elements. In general k-elements need not form a subgroup in ExtR(C;A), but in the category TR of torsion R-modules over a Dedekind domain R, S is a proper class; there are no nonzero S-projective modules and the only S-injective modules are injective R-modules in TR. In this thesis we also give the structure of S-coinjective R-modules in TR. Moreover, we define the class SB of all short exact sequences 0 A B C 0 where Im & has a supplement V in B and V in B and In & is bounded. The corresponding elements of ExtR(C;A) are called B-elements. Over a noetherian integral domain of Krull dimension 1, B-elements form a proper class. In the category TR over a Dedekind domain R, SB is a proper class; there are no nonzero SB-projective R-modules and SB-injective R-modules are only the injective R-modules. In the category TR, reduced SB-coinjective R-modules are bounded R-modules. en_US
dc.identifier.uri https://hdl.handle.net/11147/3956
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject.lcc QA247. D378 2008 en
dc.subject.lcsh Modules (Algebra) en
dc.title Proper Class Generated by Submodules That Have Supplements en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Demirci, Yılmaz Mehmet
gdc.author.institutional Alizade, Rafail
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Thesis (Master)--İzmir Institute of Technology, Mathematics en_US
gdc.description.publicationcategory Tez en_US
relation.isAuthorOfPublication 3de5f36f-567c-4d2e-8621-52c01ff78233
relation.isAuthorOfPublication.latestForDiscovery 3de5f36f-567c-4d2e-8621-52c01ff78233
relation.isOrgUnitOfPublication 9af2b05f-28ac-4012-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4005-8abe-a4dfe193da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4012-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
T000747.pdf
Size:
283.27 KB
Format:
Adobe Portable Document Format
Description:
MasterThesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: