Skip navigation
GCRIS
  • Home
  • Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Reports
  • Awards
  • Equipments
  • Explore by
    • Collections
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Sign on to:
    • My GCRIS Repository
    • Receive email
      updates
    • Edit Account details
Network Lab Bibliometrics Email Alert

  • Profile
  • Indicators
  • Other

Profile

Picture
erman.jpg picture
Full Name
Erman, Fatih
Variants
Erman, F.
Erman, F
 
Main Affiliation
04.02. Department of Mathematics
 
Email
fatiherman@iyte.edu.tr
 
ORCID
0000-0003-0398-2225
Link to Google Profile
https://scholar.google.com/citations?hl=tr&user=6HlaRHkAAAAJ
Researcher ID
J-6781-2019
 
Scopus Author ID
23102409500
Loading... 2 0 20 0 false
Loading... 3 0 20 0 false
Country
Turkey
Status
Current Staff

Publications
  • Articles
  • Others

Author

  • 19 Erman, Fatih
  • 5 Uncu, Haydar
  • 4 Gadella, Manuel
  • 4 Turgut, O. Teoman
  • 4 Turgut, Osman Teoman
  • 2 Seymen, Sema
  • 1 Akbaş, Kaya Güven
  • 1 Doğan, Çağlar
  • 1 Malkoç, Berkin
  • 1 Tunalı, Seçil
  • . next >

Subject

  • 7 Dirac delta potentials
  • 5 Renormalization
  • 4 Resolvent
  • 4 Riemannian manifolds
  • 3 Green's function
  • 2 Bound states
  • 2 Heat kernel
  • 2 Number of bound states
  • 2 Propagator
  • 2 Quantum mechanics
  • . next >

Date issued

  • 7 2020 - 2025
  • 12 2010 - 2019

Type

  • 19 Article

Fulltext

  • 15 With Fulltext
  • 4 No Fulltext


Results 1-19 of 19 (Search time: 0.301 seconds).

Issue DateTitleAuthor(s)
12024Completeness of Energy Eigenfunctions for the Reflectionless Potential in Quantum MechanicsErman, Fatih ; Turgut, O. Teoman
2Mar-2022A Direct Method for the Low Energy Scattering Solution of Delta Shell PotentialsErman, Fatih ; Seymen, Sema
3Apr-2012Existence of Hamiltonians for Some Singular Interactions on ManifoldsDoğan, Çağlar; Erman, Fatih ; Turgut, Osman Teoman
42024Explicit Derivation of the Propagator for a Point Interaction in Three Dimensional Hyperbolic SpaceErman, Fatih 
52020Green's Function Formulation of Multiple Nonlinear Dirac Delta-Function Potential in One DimensionErman, Fatih ; Uncu, Haydar
6Feb-2013A Many-Body Problem With Point Interactions on Two-Dimensional ManifoldsErman, Fatih ; Turgut, O. Teoman
72012Non-Relativistic Lee Model in Two-Dimensional Riemannian ManifoldsErman, Fatih ; Turgut, Osman Teoman
8Aug-2014Nondegeneracy of the Ground State for Nonrelativistic Lee ModelErman, Fatih ; Malkoç, Berkin; Turgut, Osman Teoman
9Mar-2018On Scattering From the One-Dimensional Multiple Dirac Delta PotentialsErman, Fatih ; Gadella, Manuel; Uncu, Haydar
102023On Schrödinger Operators Modified by Δ InteractionsAkbaş, Kaya Güven; Erman, Fatih ; Turgut, O. Teoman
11Jan-2017On the Number of Bound States of Point Interactions on Hyperbolic ManifoldsErman, Fatih 
122018On the Number of Bound States of Semirelativistic Hamiltonian With Dirac Delta Potentials in One DimensionErman, Fatih 
132017One-Dimensional Semirelativistic Hamiltonian With Multiple Dirac Delta PotentialsErman, Fatih ; Gadella, Manuel; Uncu, Haydar
14May-2019A Perturbative Approach To the Tunneling PhenomenaErman, Fatih ; Turgut, Osman Teoman
152020The Propagators for Δ and Δ′ Potentials With Time-Dependent StrengthsErman, Fatih ; Gadella, Manuel; Uncu, Haydar
16Dec-2022Rank One Perturbations Supported by Hybrid Geometries and Their DeformationsErman, Fatih ; Seymen, Sema; Turgut, O. Teoman
172016Recursion Formula for the Green's Function of a Hamiltonian for Several Types of Dirac Delta-Function Potentials in Curved SpacesErman, Fatih 
18Sep-2017Renormalization of Dirac Delta Potentials Through Minimal Extension of Heisenberg AlgebraErman, Fatih 
19Aug-2017A Singular One-Dimensional Bound State Problem and Its DegeneraciesErman, Fatih ; Gadella, Manuel; Tunalı, Seçil; Uncu, Haydar

 

Claim Researcher Page

Check the encrypted string of this email, put the correct string in the box below and click "Go" to validate the email and claim this profile.

Emails: f a t i * * * * * * @ * * * * * * * u . t r

Go


Contact via feedback form

If you want contact administrator site clicking the follow button 

Explore by

  • Collections
  • Publications
  • Researchers
  • Patents
  • Organizations
  • Projects
  • Journals


  • Events
  • Equipments
  • Awards
  • Reports
  • Language
  • Rights
  • Category

About

  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
Feedback
Powered by Research Ecosystems
Login to GCRIS Dashboard