Browsing by Author "Wegner, Gerhard"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Article Citation - WoS: 49Citation - Scopus: 52Challenges in the Preparation of Optical Polymer Composites With Nanosized Pigment Particles: a Review on Recent Efforts(John Wiley and Sons Inc., 2012-09) Demir, Mustafa Muammer; Wegner, Gerhard; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyBlends of nanosized pigment particles and polymers are widely believed to offer the potential for the design of novel or at least improved materials. This review critically evaluates the recent literature with regard to the following issues: (a) why and how does the size of the particles matter, (b) what are the requirements to create compatibility between amorphous polymers and nanoparticles, (c) carbon allotropes as nanosized pigments, (d) bulk polymerization of monomer/pigment mixtures, (e) interaction of growing chains with the particles in the polymerization, (f) depletion flocculation as a mechanism to counteract homogeneous distribution of the particles in the polymer matrix and ways to suppress the undesirable flocculation, and (g) optical properties of the blends as well as methods of optical characterization.Article Citation - WoS: 69In-Situ Bulk Polymerization of Dilute Particle/Mma Dispersions(American Chemical Society, 2007-06) Demir, Mustafa Muammer; Castignolles, Patrice; Akbey, Ümit; Wegner, Gerhard; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyComposites of poly(methyl methacrylate) and various nanoscale inorganic particles (zinc oxide, titanium dioxide, zirconium dioxide, silicon dioxide, and aluminum nitride) were prepared by in-situ bulk polymerization using 2,2′-azobis(isobutyronitrile) as initiator. The particles of ZnO, TiO 2, and ZrO2 were surface-modified by alkylphosphonic acids to render them dispersible in the monomer. The effect of these nanoparticles on the free radical polymerization was investigated. Regardless of chemical nature and size, the particles suppress the autoacceleration which would otherwise occur in the bulk free-radical polymerization of methyl methacrylate (MMA). A degenerative chain transfer is proposed to take place between surface-adsorbed water on the particles and propagating chain radicals. This reaction competes with normal termination. Formation of vinylidene chains ends originating from disproportionation is suppressed. In consequence, thermal stability of PMMA produced in the presence of particles is improved. Aggregation of individual particles upon polymerization has been observed and presumably is due to interparticle depletion attraction, even though the particles are individually dispersed in the monomer. Formation of particle clusters is suppressed when a difunctional monomer (e.g., ethylene glycol dimethacrylate) is used as comonomer. The cross-linked medium slows down the diffusion of the particles and therefore interferes with particle aggregation via a depletion mechanism.Article Citation - WoS: 40Citation - Scopus: 43Investigation of Oxygen Permeation Through Composites of Pmma and Surface-Modified Zno Nanoparticles(John Wiley and Sons Inc., 2009-02-18) Hess, Sandra; Demir, Mustafa Muammer; Yakutkin, Vladimir; Baluschev, Stanislav; Wegner, Gerhard; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyOxygen permeabilities of nanocomposite films consisting of poly(methyl methacrylate) (PMMA) and different amounts of spherical zinc oxide (ZnO) nanoparticles were determined to investigate the barrier effect of this material with respect to particle content. A method was applied which is based on quenching of an excited phosphorescent dye by oxygen. Possible effects of the nanoparticles on the response of the dye molecules were investigated and were ruled out.Article Citation - WoS: 192Optical Properties of Composites of Pmma and Surface-Modified Zincite Nanoparticles(American Chemical Society, 2007-02-20) Demir, Mustafa Muammer; Koynov, Kaloian; Akbey, Ümit; Bubeck, Christoph; Park, Insun; Lieberwirth, Ingo; Wegner, Gerhard; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyLocate full-text(opens in a new window)|Full Text(opens in a new window)|View at Publisher| Export | Download | Add to List | More... Macromolecules Volume 40, Issue 4, 20 February 2007, Pages 1089-1100 Optical properties of composites of PMMA and surface-modified zincite nanoparticles (Article) Demir, M.M.a, Koynov, K.a, Akbey, Ü.a, Bubeck, C.a, Park, I.ab, Lieberwirth, I.a, Wegner, G.a a Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany b Seoul National University, School of Chemistry, Korea, South Korea View references (65) Abstract Composites that show visible light transmittance, UV absorption, and moderately high refractive index, based on poly(methyl methacrylate) (PMMA) and zinc oxide (zincite, ZnO) nanoparticles, were prepared in two steps. First, surface-modified ZnO nanoparticles with 22 nm average diameter were nucleated by controlled precipitation via acid-catalyzed esterification of zinc acetate dihydrate with pentan-1-ol. The surface of growing crystalline particles was modified with tert-butylphosphonic acid (tBuPO3H2) in situ by monolayer coverage. Particle size and graft density of -PO3H 2 on the particle surface were controlled by the amount of surfactant applied to the reaction solution. Second, the surface-modified particles were incorporated into PMMA by in-situ bulk polymerization. Free radical polymerization was carried out in the presence of these particles using AIBN as initiator. Volume fraction (0) of the particles was varied from 0.10 to 7.76% (0.5 to 30 wt %). Although the particles are homogeneously dispersed in monomer, segregation of the individual particles upon polymerization was observed. Optical constants of the films ca. 2.0 μm including absorption and scattering efficiencies, indices of refraction, and dispersion constants were determined. The absorption coefficient at 350 nm increases linearly with ZnO, obeying Beer's law at low particle contents. However, it levels off toward a value of about 5000 cm-1 and shows a negative deviation at high concentrations because of aggregation of the individual particles. Waveguide propagation loss coefficients of the composite films were examined by prism coupling. A steep increase of the loss coefficient was found with a slope of 52 dB cm-1 vol %-1 as the volume fraction of the particle increases. The refractive index of the composites depends linearly on volume fraction of ZnO and varies from 1.487 to 1.507 (φ = 7.76%) at 633 nm. The dispersion of refractive index was found to be consistent with Cauchy's formula.Article Citation - WoS: 182Pmma/Zinc Oxide Nanocomposites Prepared by In-Situ Bulk Polymerization(John Wiley and Sons Inc., 2006-05-19) Demir, Mustafa Muammer; Memesa, Mine; Castignolles, Patrice; Wegner, Gerhard; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyDispersing surface-modified zinc oxide nano-particles (ZnO) in methyl methacrylate (MMA) improves the free radical bulk polymerization process as well as the thermal stability of the formed polymer. Hydroxy groups available on the ZnO surface may induce a degenerative transfer. This suppresses the gel effect, which leads to a better control of the heat evolution during the late stages of polymerization. The formation of chains having vinylidene end groups and head-to-head links is suppressed, which shifts the onset of thermal decomposition to the regime where decomposition occurs by random chain scission.Article Citation - WoS: 45Polymers and Inorganics: a Happy Marriage?(Polymer Society of Korea, 2007-03) Wegner, Gerhard; Demir, Mustafa Muammer; Faatz, Michael; Gorna, Katazyrna; Munoz-Espi, Rafael; Guillemet, Baptiste; Gröhn, Franziska; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe most recent developments in two areas: (a) synthesis of inorganic particles with control over size and shape by polymer additives, and (b) synthesis of inorganic-polymer hybrid materials by bulk polymerization of blends of monomers with nanosized crystals are reviewed. The precipitations of inorganics, such as zinc oxide or calcium carbonate, in presence and under the control of bishydrophilic block or comb copolymers, are relevant to the field of Biomineralization. The application of surface modified latex particles, used as controlling agents, and the formation of hybrid crystals in which the latex is embedded in otherwise perfect crystals, are discussed. The formation of nano sized spheres of amorphous calcium carbonate, stabilized by surfactant-like polymers, is also discussed. Another method for the preparation of nanosized inorganic functional particles is the controlled pyrolysis of metal salt complexes of poly (acrylic acid), as demonstrated by the syntheses of lithium cobalt oxide and zinc/magnesium oxide. Bulk polymerization of methyl methacrylate blends, with for example, nanosized zinc oxide, revealed that the mechanisms of free radical polymerization respond to the presence of these particles. The termination by radical-radical interaction and the gel effect are suppressed in favor of degenerative transfer, resulting in a polymer with enhanced thermal stability. The optical properties of the resulting polymer-particle blends are addressed based on the basic discussion of the miscibility of polymers and nanosized particles.Article Citation - WoS: 82Precipitation of Monodisperse Zno Nanocrystals Via Acid-Catalyzed Esterification of Zinc Acetate(Royal Society of Chemistry, 2006) Demir, Mustafa Muammer; Muñozz-Espí, Rafael; Lieberwirth, Ingo; Wegner, Gerhard; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyA wet-chemical method to produce zinc oxide nanocrystals of monodisperse size distribution (diameter range of 20-80 nm) is presented. The synthesis starts from zinc acetate dihydrate which is converted to ZnO in the presence of 1-pentanol in m-xylene at 130 °C. We report for the first time catalysis of this reaction by p-toluene sulfonic acid monohydrate (p-TSA), which allows a shorter reaction time and improves both the reproducibility of the particle size distribution and the crystallinity of the particles. The reaction can be scaled up to give multigram quantities of product per batch. Particles were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and photoluminesence (PL) spectroscopy. Room temperature PL spectra of ZnO prepared without catalyst exhibit a strong and sharp UV emission band at ca. 385 nm and a weak and very broad green-yellow visible emission centered at ca. 550-560 nm. However, for nanoparticles precipitated in the presence of p-TSA, the UV emission is enhanced by a factor of 4, which can be correlated with the improvement of crystal perfection. A particle formation mechanism is discussed.