Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9976
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2021-01-24T18:31:50Z-
dc.date.available2021-01-24T18:31:50Z-
dc.date.issued2013-
dc.identifier.isbn978-1-4673-5563-6-
dc.identifier.isbn978-1-4673-5562-9-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/11147/9976-
dc.description21st Signal Processing and Communications Applications Conference (SIU)en_US
dc.description.abstractIn this paper, a new statistical learning method was developed that implements the quasi-supervised learning method in an expectation-maximization loop. First, automatic strategies were generated that separated the samples drawn from different distributions into respective sample sets using the posterior probabilities computed via quasi-supervised learning based on partially separated samples. An expectation-maximization loop was then constructed by combining this procedure with the posterior probability computation step using the new separated sample sets. In controlled experiments on recognition problems with varying difficulties, the proposed method was observed to consistently outperform the plain quasi-supervised learning method.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2013 21st Signal Processing and Communications Applications Conference, SIU 2013en_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectquasi-supervised learningen_US
dc.subjectexpectation-maximizationen_US
dc.subjectconstant false alarm rateen_US
dc.subjectmaximum a posteriori ruleen_US
dc.titleImproved quasi-supervised learning by expectation-maximizationen_US
dc.typeConference Objecten_US
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.wosWOS:000325005300206en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

158
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.