Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9747
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeslitürk, Ali İhsan-
dc.date.accessioned2021-01-24T18:28:23Z-
dc.date.available2021-01-24T18:28:23Z-
dc.date.issued2005-
dc.identifier.issn0252-9602-
dc.identifier.issn1572-9087-
dc.identifier.urihttps://hdl.handle.net/11147/9747-
dc.description.abstractThis paper considers the Galerkin finite element method for the incompressible Navier-Stokes equations in two dimensions, where the finite-dimensional spaces employed consist of piecewise polynomials enriched with residual-free bubble (RFB) functions. The stability features of the residual-free bubble functions for the linearized Navier-Stokes equations are analyzed in this work. It is shown that the enrichment of the velocity space by bubble functions stabilizes the numerical method for any value of the viscosity parameter for triangular elements and for values of the viscosity parameter in the vanishing limit case for quadrilateral elements.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofActa Mathematica Scientiaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGalerkin finite element methoden_US
dc.subjectincompressible Navier-Stokes equationsen_US
dc.subjectstabilityen_US
dc.titleOn the stability of the residual-free bubbles for the Navier-Stokes equationsen_US
dc.typeArticleen_US
dc.institutionauthorNeslitürk, Ali İhsan-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume25en_US
dc.identifier.issue4en_US
dc.identifier.startpage715en_US
dc.identifier.endpage730en_US
dc.identifier.wosWOS:000233058300017en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ3-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

166
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.