Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9720
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBüyükaşık, Engin-
dc.date.accessioned2021-01-24T18:28:17Z-
dc.date.available2021-01-24T18:28:17Z-
dc.date.issued2009-
dc.identifier.issn1319-8025-
dc.identifier.urihttps://hdl.handle.net/11147/9720-
dc.description.abstractFor a locally noetherian module, we prove some conditions equivalent to being cofinitely weak supplemented. Every semilocal module is cofinitely weak supplemented. For a module M with small radical, it is shown that M is weakly supplemented if and only if every cyclic submodule has a weak supplement. A commutative domain R is h-semilocal if and only if every torsion R-module is cofinitely weak supplemented.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofArabian Journal for Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectalgebraen_US
dc.subjectmodule theoryen_US
dc.titleOn cofinitely weak supplemented modulesen_US
dc.typeArticleen_US
dc.institutionauthorBüyükaşık, Engin-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume34en_US
dc.identifier.issue1Aen_US
dc.identifier.startpage159en_US
dc.identifier.endpage164en_US
dc.identifier.wosWOS:000265277600014en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.languageiso639-1en-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Aug 24, 2024

Page view(s)

184
checked on Sep 2, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.