Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/9118
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chapko, R. S. | - |
dc.contributor.author | Yaman, Olha Ivanyshyn | - |
dc.contributor.author | Vavrychuk, V. G. | - |
dc.date.accessioned | 2020-07-25T22:03:48Z | - |
dc.date.available | 2020-07-25T22:03:48Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 0868-6912 | - |
dc.identifier.uri | https://hdl.handle.net/11147/9118 | - |
dc.description | Vavrychuk, Vasyl/0000-0002-8314-6931 | en_US |
dc.description | WOS: 000471789500002 | en_US |
dc.description.abstract | We apply the non-linear integral equation approach based on elastic potentials for determining the shape of a bounded object in the elastostatic two-dimensional domain from given Cauchy data on its boundary. The iterative algorithm is developed for the numerical solution of obtained integral equations. We find the Frechet derivative for the corresponding operator and show unique solviability of the linearized system. Full discretization of the system is realized by a trigonometric quadrature method. Due to the inherited ill-possedness in the system of linear equations we apply the Tikhonov regularization. The numerical results show that the proposed method gives a good accuracy of reconstructions with an economical computational cost. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ivan Franko National University of Lviv, | en_US |
dc.relation.ispartof | Journal of Numerical and Applied Mathematics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Double connected elastostatic domain | en_US |
dc.subject | boundary reconstruction | en_US |
dc.subject | elastic potentials | en_US |
dc.subject | boundary integral equations | en_US |
dc.subject | trigonometric quadrature method | en_US |
dc.subject | Newton method | en_US |
dc.subject | Tikhonov regularization | en_US |
dc.title | On the non-linear integral equation method for the reconstruction of an inclusion in the elastic body | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Yaman, Olha Ivanyshyn | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 1 | en_US |
dc.identifier.issue | 130 | en_US |
dc.identifier.startpage | 7 | en_US |
dc.identifier.endpage | 17 | en_US |
dc.identifier.wos | WOS:000471789500002 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
1
checked on Nov 9, 2024
Page view(s)
252
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.