Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/7252
Title: | Simulation of Groundwater Flow in the Gediz River Basin | Authors: | Elçi, Alper Şimşek, Celalettin Gündüz, Orhan Baba, Alper Acınan, Sezen Yıldızer, Nilgün Murathan, Alim |
Keywords: | Watershed Groundwater model MODFLOW |
Publisher: | European Water Resources Association | Abstract: | The objective of this paper is to present the approach and results of a groundwater flow modeling study that was conducted for the Gediz River Basin (GRB), located in western Turkey. The GRB is one of the most important, largest and stressed river basins in Turkey. This basin is agriculture-dominant; however significant competition for water exists among various stakeholders and sectors. The model is set up as a two-dimensional, finite-difference MODFLOW-2005 model that is solved for steady-state conditions, representing average annual groundwater flow in the basin. The main purpose of the groundwater flow model is to determine groundwater flow dynamics and water budget for the alluvial aquifers of the GRB. Pumping wells in the GRB predominantly withdraw water from these aquifers. A model-based estimate of the hydraulic conductivity distribution is also obtained. A two-stage modeling approach is taken to determine boundary conditions of the alluvial aquifer model domain. This approach results in two independently calibrated models that are referred as baseline and alluvial flow models. Modeled groundwater heads of both models provide an acceptable fit to observed data. The range of hydraulic conductivity (K) values is from 0.01 to 4451 m/d indicating a very heterogeneous aquifer. The median K value is 34.92 m/d and the standard deviation is 366.45 m/d. According to the baseline flow model budget, it can be concluded that the most significant groundwater input for the entire GRB is leakage from surface water such as dam reservoirs and the Gediz riverbed. In the alluvial aquifer, surface water still plays an important role in the water balance, however lateral flows across aquifer boundaries are the most important component. Also, groundwater extraction is larger than groundwater recharge by precipitation. | Description: | EWRA 2015 -9th World Congress -İstanbul- June 10-13 / 2015 “Water Resources Management in a Changing World: Challenges and Opportunities” | URI: | https://hdl.handle.net/11147/7252 |
Appears in Collections: | Civil Engineering / İnşaat Mühendisliği |
Show full item record
CORE Recommender
Page view(s)
368
checked on Dec 23, 2024
Download(s)
250
checked on Dec 23, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.