Show simple item record

dc.contributor.advisorÇelebi, Cemen_US
dc.contributor.advisorÜnverdi, Özhanen_US
dc.contributor.authorYağmurcukardeş, Nesli
dc.date.accessioned2017-12-06T10:19:53Z
dc.date.available2017-12-06T10:19:53Z
dc.date.issued2017-07
dc.identifier.citationYağmurcukardeş, N. (2017). Functionalized CVD grown graphene for gas sensing applications. Unpublished doctoral dissertation, İzmir Institute of Technology, İzmir, Turkeyen_US
dc.identifier.urihttp://hdl.handle.net/11147/6543
dc.descriptionThesis (Doctoral)--Izmir Institute of Technology, Materials Science and Engineering, Izmir, 2017en_US
dc.descriptionIncludes bibliographical references (leaves: 118-128)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.description.abstractGraphene is a two dimensional one-atom thick sheet of sp2 bonded carbon atoms arranged in a honeycomb lattice structure. It has high electron mobility and it is the material with the lowest resistivity at room temperature. By changing the edge properties with chemical modification, few-layer graphene may gain new magnetic properties. Besides having unusual electronic properties, single-layer graphene has important gas sensing capability. With the adsorption of the gas molecules, the local carrier concentration of graphene is modified and its resistance is altered. The high mobility, large area ohmic contact and metallic conductivity of graphene help to reduce the background noise and thus make it highly sensitive device even small molecular changes at atomic ranges. In this dissertation, Chemical Vapor Deposition (CVD) grown graphene layers were functionalized by self-assembled monolayers (SAMs) and etched anisotropically by H2 for the first time to improve sensor characteristics for toxic gas sensing. CO, CO2, NH3 gases were used as target molecules. Characterization techniques such as Optical Microscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Kelvin Probe Force Microscopy (KPFM), Raman Spectroscopy, Quartz Crystal Microbalance (QCM) and amperometric measurements were used for the investigation of the metal thin film, graphene layers and gas adsorbed film structures. Results indicate that the SAM modification enhanced CO and NH3 absorbing capability of graphene films and also improved their periodic reversible response characteristics. The resistivity results are consistent with frequency change results. Humidity sensitivity of sensors are also decreased significantly due to the applied etching process.en_US
dc.description.abstractGrafen, bir atom kalınlığında sp2 bağlı karbon atomlarının petek yapı örgüsünde dizildiği iki boyutlu bir malzemedir. Eşsiz mekanik mukavemete sahip, sıfır boşluklu bir yarı iletkendir. Yüksek elektron mobilitesine ve oda sıcaklığında en düşük özdirençe sahip malzemedir. Kenar özelliklerini kimyasal modifikasyon ile değiştirerek az tabakalı grafene yeni manyetik özellikler kazandırılabilir. Olağandışı elektronik özelliklere sahip olmasının yanı sıra, tek katmanlı grafen önemli gaz algılama kabiliyetine sahiptir. Gaz moleküllerinin adsorpsiyonu ile yerel taşıyıcı konsantrasyonu modifiye edilir ve direnci değişir. Grafenin yüksek elektron hareket kabiliyeti, geniş alan omik teması ve metal iletkenliği, arka plandaki gürültüyü azaltmaya yardımcı olur ve böylece milyarda bir seviyedeki parçaları ve hatta atomik aralıktaki küçük moleküler değişiklikleri tespit etmek için son derece hassas bir cihaz yapar. Bu tezde, Kimyasal Buhar Briktirme (KBB) yöntemi ile büyütülen grafen filmler, sensör özelliklerinin zehirli gazların algılanmasında iyileştirilmesi adına ilk defa kendiliğinden organize tek katmanlarla fonsiyonelleştirildi ve anizotropik H2 a¸sındırma yöntemleri uygulandı. Karakterizasyon teknikleri; Optik Mikroskop, Taramalı Elektron Mikroskobu (SEM), Atomik Kuvvet Mikroskobu (AFM), Kelvin Uç Kuvvet Mikroskobu (KPFM), Raman Spektroskopisi, Kuvars Kristal Mikroterazi (QCM) ve amperometrik ölçüm teknikleri, metal ince filmlerin, grafen katmanlarının ve gaz emilen film yapılarının araştırılmasında kullanılmıştır. Sonuçların gösterdiğine göre grafen filmlerin KBB modifikasyonu ile CO ve NH3 emilim kapasitesi arttırılmış ve periyodik tersinir tepki özellikleri iyileştirilmiştir. Direnç ölçümleri frekans değişim sonuçları ile uyumludur. Uygulanan aşındırma işlemi ile sensörlerin neme hassasiyetleri de önemli ölçüde azaltılmıştır.en_US
dc.description.sponsorshipTUBITAK (112T946)en_US
dc.format.extentxx, 128 leavesen_US
dc.language.isoengen_US
dc.publisherIzmir Institute of Technologyen_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/TBAG/112T946en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGrapheneen_US
dc.subjectChemical vapor depositionen_US
dc.subjectGas sensingen_US
dc.subjectGas sensoren_US
dc.subjectGraphene filmsen_US
dc.subjectQuartz crystal microbalancesen_US
dc.titleFunctionalized CVD grown graphene for gas sensing applicationsen_US
dc.title.alternativeKBB yöntemi ile büyütülen fonksiyonelleştirilmiş grafenin gaz algılama uygulamalarıen_US
dc.typedoctoralThesisen_US
dc.contributor.departmentIzmir Institute of Technology. Materials Science and Engineeringen_US
dc.relation.publicationcategoryTezen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record