Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/4429
Title: | High Strain Rate Reloading Compresson Testing of a Closed-Cell Alumnum Foam | Authors: | Taşdemirci, Alper Güden, Mustafa Hall, Ian W. |
Keywords: | High strain rate Aluminum foam Compression test LS-DYNA |
Publisher: | The European Association for Experimental Mechanics | Source: | Taşdemirci, A., Güden, M., and Hall, I. W. (2007, July). High strain rate reloading compresson testing of a closed-cell alumnum foam. Paper presented at the conference of the 13th International Conference on Experimental Mechanics, Alexandroupolis, Greece. | Abstract: | Aluminum (Al) closed-cell foams are materials of increasing importance because they have good energy absorption capabilities combined with good thermal and acoustic properties. They can convert much of the impact energy into plastic energy and absorb more energy than bulk metals at relatively low stresses. When used as filling materials in tubes, they increase total energy absorption over the sum of the energy absorbed by foam alone and tube alone [1]. In designing with metallic foams as energy absorbing fillers, mechanical properties are needed for strain rates corresponding to those created by impact events. Quasi-static mechanical behavior of metallic foams has been fairly extensively studied, but data concerning high strain rate mechanical behavior of these materials are, however, rather sparse [2,3]. This study was initiated, therefore, to study and model the high strain rate mechanical behavior of an Al foam produced by foaming of powder compacts and to compare it with quasi-static behavior and, hence, determine any effect on energy absorbing capacity. | URI: | http://doi.org/10.1007/978-1-4020-6239-1_394 http://hdl.handle.net/11147/4429 |
Appears in Collections: | Mechanical Engineering / Makina Mühendisliği |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
4429.pdf | Konferans Bildiri | 113.66 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
286
checked on Dec 23, 2024
Download(s)
240
checked on Dec 23, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.