Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15534
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGungormus, Elif-
dc.date.accessioned2025-04-25T20:33:49Z-
dc.date.available2025-04-25T20:33:49Z-
dc.date.issued2025-
dc.identifier.issn2213-2929-
dc.identifier.issn2213-3437-
dc.identifier.urihttps://doi.org/10.1016/j.jece.2025.116337-
dc.identifier.urihttps://hdl.handle.net/11147/15534-
dc.description.abstractThis study aimed to develop and validate an Artificial Neural Networks (ANNs) model for the design and optimization of cellulose acetate-polysulfone blend ultrafiltration membranes, produced via the Non-Solvent Induced Phase Separation method. After some data science applications on a comprehensive dataset obtained from literature studies, the ultimate ANNs model exhibited superior predictive capabilities and effectively captured complex nonlinear relationships in the data. The optimum model configuration with a single hidden layer containing six neurons provided reliable predictions by avoiding overfitting and underfitting risks and significantly reducing error metrics. The model analyzed the effects of input variables on outputs, revealing that different stages of the membrane preparation process had varying impacts on performance metrics. This finding emphasized the importance of systematically optimizing the preparation process to enhance overall membrane performance. The model's predictions showed strong agreement with experimental data, further validating its accuracy. The optimum production conditions identified by the model offered significant improvements in membrane performance. Moreover, the model accelerated the membrane development process by reducing the required number of experimental trials and promoting efficient resource utilization. This approach contributed to both economic and environmental sustainability by reducing production costs and energy consumption. This study highlighted the significant potential of machine learning techniques for future innovations and advancements in this field by enabling precise, efficient, and sustainable membrane design and synthesis.en_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine Learningen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectMembrane Designen_US
dc.subjectPhase Inversionen_US
dc.subjectCellulose Acetateen_US
dc.subjectPolysulfoneen_US
dc.titleData Driven Modeling and Design of Cellulose Acetate-Polysulfone Blend Ultrafiltration Membranes Based on Artificial Neural Networksen_US
dc.typeArticleen_US
dc.institutionauthorGungormus, Elif-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume13en_US
dc.identifier.issue3en_US
dc.identifier.wosWOS:001460679200001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.jece.2025.116337-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

2
checked on Apr 28, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.