Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15309
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKamagara, Abel-
dc.contributor.authorKagudde, Abbas-
dc.contributor.authorAtakan, Baris-
dc.date.accessioned2025-02-05T09:48:48Z-
dc.date.available2025-02-05T09:48:48Z-
dc.date.issued2025-
dc.identifier.issn2090-0147-
dc.identifier.issn2090-0155-
dc.identifier.urihttps://doi.org/10.1155/jece/6570183-
dc.identifier.urihttps://hdl.handle.net/11147/15309-
dc.descriptionkagudde, abbas/0000-0002-8580-984X; Atakan, Baris/0000-0002-2310-8175en_US
dc.description.abstractThe efficiency of recovery and signal decoding efficacy at the receiver in end-to-end communications using linearly predicted coefficients are susceptible to errors, especially for highly compressed signals. In this paper, we propose a method to efficiently recover linearly predicted coefficients for high signal compression for end-to-end communications. Herein, the steepest descent algorithm is applied at the receiver to decode the affected linear predicted coefficients. This algorithm is used to estimate the unknown frequency, time, and phase. Subsequently, the algorithm facilitates down-conversion, time and carrier recovery, equalization, and correlation processes. To evaluate the feasibility of the proposed method, parameters such as multipath interference, additive white Gaussian noise, timing, and phase noise are modeled as channel errors in signal compression using the software-defined receiver. Our results show substantial recovery efficiency with noise variance between 0 and y x 10E - 3, where y lies between 0 and 10 using the modeled performance metrics of bit error rate, symbol error rate, and mean square error. This is promising for modeling software-defined networks using highly compressed signals in end-to-end communications.en_US
dc.description.sponsorshipUNESCO TWAS Seed Grant for New African Principal Investigators (SG-NAPI) [3240337117]; Kyambogo University Competitive Research Grants Scheme [8]en_US
dc.description.sponsorshipTis work was funded by UNESCO TWAS Seed Grant for New African Principal Investigators (SG-NAPI) no. 3240337117. Kyambogo University Competitive Research Grants Scheme No. 8 of 2023.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaptive Steepest Descent Algorithmen_US
dc.subjectEnd-To-End Communicationsen_US
dc.subjectLinearly Predicted Coefficientsen_US
dc.subjectSignal Compressionen_US
dc.titleEfficient Recovery of Linear Predicted Coefficients Based on Adaptive Steepest Descent Algorithm in Signal Compression for End-To Communicationsen_US
dc.typeArticleen_US
dc.authoridkagudde, abbas/0000-0002-8580-984X-
dc.authoridAtakan, Baris/0000-0002-2310-8175-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume2025en_US
dc.identifier.issue1en_US
dc.identifier.wosWOS:001397222300001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1155/jece/6570183-
dc.identifier.scopusqualityQ2-
dc.description.woscitationindexEmerging Sources Citation Index-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

2
checked on Feb 17, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.