Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14988
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Tuğlular, Tuğkan | tr |
dc.contributor.author | Keklik, Onur | tr |
dc.date.accessioned | 2024-10-25T23:28:53Z | - |
dc.date.available | 2024-10-25T23:28:53Z | - |
dc.date.issued | 2024-07 | en_US |
dc.identifier.uri | https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=UjlM15wKZGQW6TLC0pvCt8_1EfuOL_JbY2cY_fmPl06zuSNeVCCa_eytsxxSydjm | - |
dc.identifier.uri | https://hdl.handle.net/11147/14988 | - |
dc.description | Thesis (Doctoral)--İzmir Institute of Technology, İzmir, 2024 | en_US |
dc.description | Includes bibliographical references (leaves. 71-80) | en_US |
dc.description | Text in English; Abstract: Turkish and English. | en_US |
dc.description.abstract | Yerel atıf önerisi, ilgili atıf yer tutucusundaki eksik referansı bulma görevidir. Temel olarak bağlamsal olduğundan, bağlam atıfı yansıtır. Öte yandan, bir bağlam bir dizi makale için bir tanımlayıcı olabilir. Başka bir deyişle, bir bağlam için birden fazla atıf adayı olabilir. Bu nedenle, bir bağlamın aday makalelerle daha fazla eşleşmesi faydalıdır. Aday makalelerin başlıkları ve özetleri, küresel bir bağlam oluşturur ve yerel olanla eşleşmek için kullanılır. Bu çalışma, küresel ve yerel bağlamlar arasındaki benzerlikleri kullanarak atıf tahminleri üretmek için son teknoloji bir yaklaşım önermektedir. BERT özelliklerini Grafik Evrişimsel Ağlara gömerek kullanan modelimiz, önceki yöntemlere göre üstün performans sergilemektedir. ACL-200, FullTextPeerRead, RefSeer ve arXiv veri kümelerinde tüm önceki yaklaşımları aşmakla kalmaz, aynı zamanda hız, bellek ve hesaplama gereksinimleri arasında bir denge kurar. Bu yaklaşım bir ürün olarak son kullanıcıya sunulduğunda, araştırmacılar için gerçek zamanlı önerileri mümkün kılar. | tr |
dc.description.abstract | Local Citation Recommendation is a task that finds the missing reference in the corresponding citation placeholder. It is mainly contextual since context identifies the citation. On the other hand, a context can be a descriptor for a set of papers. In other words, there can be more than one candidate citation for a context. Thus, a further matching of a context with candidate papers is beneficial. Titles and abstracts of candidate papers serve as a global context to match with the local one. This work proposes a state-of-the-art approach for the Local Citation Recommendation task that exploits the similarities between global and local contexts to generate citation predictions. By utilizing a Graph Convolutional Network (GCN) with BERT embeddings, our proposed model demonstrates superior performance over previous methods. It not only outperforms all prior approaches on the benchmark datasets of ACL-200, FullTextPeerRead, RefSeer, and arXiv but also strikes a balance between speed, memory, and computational requirements. Once deployed as a production-level Local Citation Recommendation, it is fast enough to enable real-time recommendations for researchers. | en_US |
dc.format.extent | xiii, 80 leaves | en_US |
dc.language.iso | en | en_US |
dc.publisher | 01. Izmir Institute of Technology | en_US |
dc.subject | Natural language processing (Computer science) | en_US |
dc.subject | Computer Engineering and Computer Science and Control | en_US |
dc.title | Local citation recommendation with graph convolutional networks | en_US |
dc.title.alternative | Çizge evrişimsel ağ kullanılarak yerel atıf önerisinde bulunma | tr |
dc.type | Doctoral Thesis | en_US |
dc.department | Thesis (Doctoral)--İzmir Institute of Technology, Computer Engineering | en_US |
dc.identifier.endpage | 94 | - |
dc.relation.publicationcategory | Tez | en_US |
dc.identifier.yoktezid | 890383 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Doctoral Thesis | - |
Appears in Collections: | Phd Degree / Doktora |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.