Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14850
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLeblebici, Asımen_US
dc.contributor.authorMısırlıoğlu, Hüseyin Korayen_US
dc.contributor.authorKoçal, Gizem Çalıbaşıen_US
dc.contributor.authorEllidokuz, Hülyaen_US
dc.contributor.authorBaşpınar, Yaseminen_US
dc.date.accessioned2024-10-07T11:42:11Z-
dc.date.available2024-10-07T11:42:11Z-
dc.date.issued2021en_US
dc.identifier.urihttps://doi.org/10.30621/jbachs.1551015-
dc.identifier.urihttps://dergipark.org.tr/en/pub/jbachs/issue/86932/1551015-
dc.identifier.urihttps://hdl.handle.net/11147/14850-
dc.description.abstractPurpose: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Accurate survival prediction is crucial for advanced-stage patients to optimize treatment strategies and improve clinical outcomes. This study aimed to develop an artificial intelligence-assisted clinical decision support system (CDSS) for survival prediction in CRC patients using clinical and genomic data from the Cancer Genome Atlas Colon Adenocarcinoma Collection (TCGA-COAD) dataset. Methods: Machine learning algorithms, including C4.5 Decision Tree, Support Vector Machines (SVM), Random Forest, and Naive Bayes, were employed to create survival prediction models. Clinical parameters and genomic data from key pathways, such as glycolysis/gluconeogenesis and mTORC1, were integrated into the models. The models were evaluated based on accuracy and performance. Results: The Random Forest algorithm achieved the highest accuracy (82.3%) when only clinical parameters were used. When clinical data were combined with gene expression data, the model’s accuracy increased further. The resulting models were incorporated into a user-friendly web interface, SurvCOCA, for clinical use. Conclusions: This study demonstrates the potential of AI-based tools to improve prognosis predictions in CRC patients. Further research is needed, with larger datasets and additional machine learning algorithms, to enhance clinical decision-making and optimize treatment strategies.en_US
dc.language.isoenen_US
dc.publisherdergiparken_US
dc.relation.ispartofJournal of Basic and Clinical Health Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectColorectal canceren_US
dc.subjectSurvival predictionen_US
dc.subjectArtificial intelligenceen_US
dc.subjectClinical decision support systemen_US
dc.subjectMachine learningen_US
dc.titleAI-Assisted survival prediction in colorectal cancer: A Clinical decision support toolen_US
dc.typeArticleen_US
dc.authorid0000-0002-5197-6631en_US
dc.institutionauthorLeblebici, Asımen_US
dc.departmentİzmir Institute of Technology. Rectorateen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.30621/jbachs.1551015-
dc.identifier.urlhttps://doi.org/10.30621/jbachs.1551015-
dc.identifier.urlhttps://dergipark.org.tr/en/pub/jbachs/issue/86932/1551015-
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.contributor.affiliationDokuz Eylül Üniversitesien_US
dc.contributor.affiliationDokuz Eylül Üniversitesien_US
dc.contributor.affiliationDokuz Eylül Üniversitesien_US
dc.contributor.affiliationDokuz Eylül Üniversitesien_US
dc.relation.issn2564-7288en_US
dc.description.volume8en_US
dc.description.issue3en_US
dc.description.startpage771en_US
dc.description.endpage778en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept01.01. Units Affiliated to the Rectorate-
Appears in Collections:Rectorate / Rektörlük
Files in This Item:
File Description SizeFormat 
14850.pdfArticle1 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

148
checked on Nov 18, 2024

Download(s)

20
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.