Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14441
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖz, Işıl-
dc.date.accessioned2024-05-05T14:59:56Z-
dc.date.available2024-05-05T14:59:56Z-
dc.date.issued2024-
dc.identifier.issn1302-9304-
dc.identifier.issn2547-958X-
dc.identifier.urihttps://doi.org/10.21205/deufmd.2024267606-
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1223639/quantitative-performance-analysis-of-blas-libraries-on-gpu-architectures-
dc.identifier.urihttps://hdl.handle.net/11147/14441-
dc.description.abstractBasic Linear Algebra Subprograms (BLAS) are a set of linear algebra routines commonly used by machine learning applications and scientific computing. BLAS libraries with optimized implementations of BLAS routines offer high performance by exploiting parallel execution units in target computing systems. With massively large number of cores, graphics processing units (GPUs) exhibit high performance for computationally-heavy workloads. Recent BLAS libraries utilize parallel cores of GPU architectures efficiently by employing inherent data parallelism. In this study, we analyze GPU-targeted functions from two BLAS libraries, cuBLAS and MAGMA, and evaluate their performance on a single-GPU NVIDIA architecture by considering architectural features and limitations. We collect architectural performance metrics and explore resource utilization characteristics. Our work aims to help researchers and programmers to understand the performance behavior and GPU resource utilization of the BLAS routines implemented by the libraries.en_US
dc.language.isoenen_US
dc.relation.ispartofDokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleQuantitative Performance Analysis of BLAS Libraries on GPU Architecturesen_US
dc.institutionauthorÖz, Işıl-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume26en_US
dc.identifier.issue76en_US
dc.identifier.startpage40en_US
dc.identifier.endpage48en_US
dc.relation.publicationcategoryDiğeren_US
dc.identifier.doi10.21205/deufmd.2024267606-
dc.identifier.trdizinid1223639-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

166
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.