Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnan, Emrah-
dc.date.accessioned2024-05-05T14:59:55Z-
dc.date.available2024-05-05T14:59:55Z-
dc.date.issued2024-
dc.identifier.issn1302-9304-
dc.identifier.issn2547-958X-
dc.identifier.urihttps://doi.org/10.21205/deufmd.2024267619-
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1223652/prediction-of-associations-between-nanoparticle-drug-and-cancer-using-variational-graph-autoencoder-
dc.identifier.urihttps://hdl.handle.net/11147/14438-
dc.description.abstractPredicting implicit drug-disease associations is critical to the development of new drugs, with the aim of minimizing side effects and development costs. Existing drug-disease prediction methods typically focus on either single or multiple drug-disease networks. Recent advances in nanoparticles particularly in cancer research show improvements in bioavailability and pharmacokinetics by reducing toxic side effects. Thus, the interaction of the nanoparticles with drugs and diseases tends to improve during the development phase. In this study, it presents a variational graph autoencoder model to the cell-specific drug delivery data, including the class interactions between nanoparticle, drug, and cancer types as a knowledge base for targeted drug delivery. The cell-specific drug delivery data is transformed into a bipartite graph where relations only exist between sequences of these class interactions. Experimental results show that the knowledge graph enhanced Variational Graph Autoencoder model with VGAE-ROC-AUC (0.9627) and VGAE-AP (0.9566) scores performs better than the Graph Autoencoder model.en_US
dc.language.isoenen_US
dc.relation.ispartofDokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titlePrediction of Associations between Nanoparticle, Drug and Cancer Using Variational Graph Autoencoderen_US
dc.institutionauthorEmrah İNAN-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume26en_US
dc.identifier.issue76en_US
dc.identifier.startpage167en_US
dc.identifier.endpage172en_US
dc.relation.publicationcategoryDiğeren_US
dc.identifier.doi10.21205/deufmd.2024267619-
dc.identifier.trdizinid1223652-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

130
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.